Cargando…
The Type I Inositol 1,4,5-Trisphosphate Receptor Interacts with Protein 4.1N to Mediate Neurite Formation through Intracellular Ca(2+) Waves
Ca(2+) waves are an important mechanism for encoding Ca(2+) signaling information, but the molecular basis for wave formation and how this regulates neuronal function is not entirely understood. Using nerve growth factor-differentiated PC12 cells as a model system, we investigated the interaction be...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
S. Karger AG
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124450/ https://www.ncbi.nlm.nih.gov/pubmed/21389686 http://dx.doi.org/10.1159/000324507 |
Sumario: | Ca(2+) waves are an important mechanism for encoding Ca(2+) signaling information, but the molecular basis for wave formation and how this regulates neuronal function is not entirely understood. Using nerve growth factor-differentiated PC12 cells as a model system, we investigated the interaction between the type I inositol 1,4,5-trisphosphate receptor (IP3R1) and the cytoskeletal linker, protein 4.1N, to examine the relationship between Ca(2+) wave formation and neurite development. This was examined using RNAi and overexpressed dominant negative binding regions of each protein. Confocal microscopy was used to monitor neurite formation and Ca(2+) waves. Knockdown of IP3R1 or 4.1N attenuated neurite formation, as did binding regions of IP3R1 and 4.1N, which colocalized with endogenous 4.1N and IP3R1, respectively. Upon stimulation with the IP3-producing agonist carbachol, both RNAi and dominant negative molecules shifted signaling events from waves to homogeneous patterns of Ca(2+) release. These findings provide evidence that IP3R1 localization, via protein 4.1N, is necessary for Ca(2+) wave formation, which in turn mediates neurite formation. |
---|