Cargando…

The Type I Inositol 1,4,5-Trisphosphate Receptor Interacts with Protein 4.1N to Mediate Neurite Formation through Intracellular Ca(2+) Waves

Ca(2+) waves are an important mechanism for encoding Ca(2+) signaling information, but the molecular basis for wave formation and how this regulates neuronal function is not entirely understood. Using nerve growth factor-differentiated PC12 cells as a model system, we investigated the interaction be...

Descripción completa

Detalles Bibliográficos
Autores principales: Fiedler, Michael J., Nathanson, Michael H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: S. Karger AG 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124450/
https://www.ncbi.nlm.nih.gov/pubmed/21389686
http://dx.doi.org/10.1159/000324507
Descripción
Sumario:Ca(2+) waves are an important mechanism for encoding Ca(2+) signaling information, but the molecular basis for wave formation and how this regulates neuronal function is not entirely understood. Using nerve growth factor-differentiated PC12 cells as a model system, we investigated the interaction between the type I inositol 1,4,5-trisphosphate receptor (IP3R1) and the cytoskeletal linker, protein 4.1N, to examine the relationship between Ca(2+) wave formation and neurite development. This was examined using RNAi and overexpressed dominant negative binding regions of each protein. Confocal microscopy was used to monitor neurite formation and Ca(2+) waves. Knockdown of IP3R1 or 4.1N attenuated neurite formation, as did binding regions of IP3R1 and 4.1N, which colocalized with endogenous 4.1N and IP3R1, respectively. Upon stimulation with the IP3-producing agonist carbachol, both RNAi and dominant negative molecules shifted signaling events from waves to homogeneous patterns of Ca(2+) release. These findings provide evidence that IP3R1 localization, via protein 4.1N, is necessary for Ca(2+) wave formation, which in turn mediates neurite formation.