Cargando…
Proteomic Analysis of Pathways Involved in Estrogen-Induced Growth and Apoptosis of Breast Cancer Cells
BACKGROUND: Estrogen is a known growth promoter for estrogen receptor (ER)-positive breast cancer cells. Paradoxically, in breast cancer cells that have been chronically deprived of estrogen stimulation, re-introduction of the hormone can induce apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Here, we so...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124472/ https://www.ncbi.nlm.nih.gov/pubmed/21738574 http://dx.doi.org/10.1371/journal.pone.0020410 |
_version_ | 1782207094789767168 |
---|---|
author | Hu, Zhang-Zhi Kagan, Benjamin L. Ariazi, Eric A. Rosenthal, Dean S. Zhang, Lihua Li, Jordan V. Huang, Hongzhan Wu, Cathy Jordan, V. Craig Riegel, Anna T. Wellstein, Anton |
author_facet | Hu, Zhang-Zhi Kagan, Benjamin L. Ariazi, Eric A. Rosenthal, Dean S. Zhang, Lihua Li, Jordan V. Huang, Hongzhan Wu, Cathy Jordan, V. Craig Riegel, Anna T. Wellstein, Anton |
author_sort | Hu, Zhang-Zhi |
collection | PubMed |
description | BACKGROUND: Estrogen is a known growth promoter for estrogen receptor (ER)-positive breast cancer cells. Paradoxically, in breast cancer cells that have been chronically deprived of estrogen stimulation, re-introduction of the hormone can induce apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Here, we sought to identify signaling networks that are triggered by estradiol (E2) in isogenic MCF-7 breast cancer cells that undergo apoptosis (MCF-7:5C) versus cells that proliferate upon exposure to E2 (MCF-7). The nuclear receptor co-activator AIB1 (Amplified in Breast Cancer-1) is known to be rate-limiting for E2-induced cell survival responses in MCF-7 cells and was found here to also be required for the induction of apoptosis by E2 in the MCF-7:5C cells. Proteins that interact with AIB1 as well as complexes that contain tyrosine phosphorylated proteins were isolated by immunoprecipitation and identified by mass spectrometry (MS) at baseline and after a brief exposure to E2 for two hours. Bioinformatic network analyses of the identified protein interactions were then used to analyze E2 signaling pathways that trigger apoptosis versus survival. Comparison of MS data with a computationally-predicted AIB1 interaction network showed that 26 proteins identified in this study are within this network, and are involved in signal transduction, transcription, cell cycle regulation and protein degradation. CONCLUSIONS: G-protein-coupled receptors, PI3 kinase, Wnt and Notch signaling pathways were most strongly associated with E2-induced proliferation or apoptosis and are integrated here into a global AIB1 signaling network that controls qualitatively distinct responses to estrogen. |
format | Online Article Text |
id | pubmed-3124472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31244722011-07-07 Proteomic Analysis of Pathways Involved in Estrogen-Induced Growth and Apoptosis of Breast Cancer Cells Hu, Zhang-Zhi Kagan, Benjamin L. Ariazi, Eric A. Rosenthal, Dean S. Zhang, Lihua Li, Jordan V. Huang, Hongzhan Wu, Cathy Jordan, V. Craig Riegel, Anna T. Wellstein, Anton PLoS One Research Article BACKGROUND: Estrogen is a known growth promoter for estrogen receptor (ER)-positive breast cancer cells. Paradoxically, in breast cancer cells that have been chronically deprived of estrogen stimulation, re-introduction of the hormone can induce apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Here, we sought to identify signaling networks that are triggered by estradiol (E2) in isogenic MCF-7 breast cancer cells that undergo apoptosis (MCF-7:5C) versus cells that proliferate upon exposure to E2 (MCF-7). The nuclear receptor co-activator AIB1 (Amplified in Breast Cancer-1) is known to be rate-limiting for E2-induced cell survival responses in MCF-7 cells and was found here to also be required for the induction of apoptosis by E2 in the MCF-7:5C cells. Proteins that interact with AIB1 as well as complexes that contain tyrosine phosphorylated proteins were isolated by immunoprecipitation and identified by mass spectrometry (MS) at baseline and after a brief exposure to E2 for two hours. Bioinformatic network analyses of the identified protein interactions were then used to analyze E2 signaling pathways that trigger apoptosis versus survival. Comparison of MS data with a computationally-predicted AIB1 interaction network showed that 26 proteins identified in this study are within this network, and are involved in signal transduction, transcription, cell cycle regulation and protein degradation. CONCLUSIONS: G-protein-coupled receptors, PI3 kinase, Wnt and Notch signaling pathways were most strongly associated with E2-induced proliferation or apoptosis and are integrated here into a global AIB1 signaling network that controls qualitatively distinct responses to estrogen. Public Library of Science 2011-06-27 /pmc/articles/PMC3124472/ /pubmed/21738574 http://dx.doi.org/10.1371/journal.pone.0020410 Text en Hu et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hu, Zhang-Zhi Kagan, Benjamin L. Ariazi, Eric A. Rosenthal, Dean S. Zhang, Lihua Li, Jordan V. Huang, Hongzhan Wu, Cathy Jordan, V. Craig Riegel, Anna T. Wellstein, Anton Proteomic Analysis of Pathways Involved in Estrogen-Induced Growth and Apoptosis of Breast Cancer Cells |
title | Proteomic Analysis of Pathways Involved in Estrogen-Induced Growth and Apoptosis of Breast Cancer Cells |
title_full | Proteomic Analysis of Pathways Involved in Estrogen-Induced Growth and Apoptosis of Breast Cancer Cells |
title_fullStr | Proteomic Analysis of Pathways Involved in Estrogen-Induced Growth and Apoptosis of Breast Cancer Cells |
title_full_unstemmed | Proteomic Analysis of Pathways Involved in Estrogen-Induced Growth and Apoptosis of Breast Cancer Cells |
title_short | Proteomic Analysis of Pathways Involved in Estrogen-Induced Growth and Apoptosis of Breast Cancer Cells |
title_sort | proteomic analysis of pathways involved in estrogen-induced growth and apoptosis of breast cancer cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124472/ https://www.ncbi.nlm.nih.gov/pubmed/21738574 http://dx.doi.org/10.1371/journal.pone.0020410 |
work_keys_str_mv | AT huzhangzhi proteomicanalysisofpathwaysinvolvedinestrogeninducedgrowthandapoptosisofbreastcancercells AT kaganbenjaminl proteomicanalysisofpathwaysinvolvedinestrogeninducedgrowthandapoptosisofbreastcancercells AT ariazierica proteomicanalysisofpathwaysinvolvedinestrogeninducedgrowthandapoptosisofbreastcancercells AT rosenthaldeans proteomicanalysisofpathwaysinvolvedinestrogeninducedgrowthandapoptosisofbreastcancercells AT zhanglihua proteomicanalysisofpathwaysinvolvedinestrogeninducedgrowthandapoptosisofbreastcancercells AT lijordanv proteomicanalysisofpathwaysinvolvedinestrogeninducedgrowthandapoptosisofbreastcancercells AT huanghongzhan proteomicanalysisofpathwaysinvolvedinestrogeninducedgrowthandapoptosisofbreastcancercells AT wucathy proteomicanalysisofpathwaysinvolvedinestrogeninducedgrowthandapoptosisofbreastcancercells AT jordanvcraig proteomicanalysisofpathwaysinvolvedinestrogeninducedgrowthandapoptosisofbreastcancercells AT riegelannat proteomicanalysisofpathwaysinvolvedinestrogeninducedgrowthandapoptosisofbreastcancercells AT wellsteinanton proteomicanalysisofpathwaysinvolvedinestrogeninducedgrowthandapoptosisofbreastcancercells |