Cargando…
An ANN model for treatment prediction in HBV patients
Two types of antiviral treatments, namely, interferon and nucleoside/nucleotide analogues are available for hepatitis infections. The selection of drug and dose determined using known pharmacokinetics and pharmacodynamics data is important. The lack of sufficient information for pharmacokinetics of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124792/ https://www.ncbi.nlm.nih.gov/pubmed/21738322 |
Sumario: | Two types of antiviral treatments, namely, interferon and nucleoside/nucleotide analogues are available for hepatitis infections. The selection of drug and dose determined using known pharmacokinetics and pharmacodynamics data is important. The lack of sufficient information for pharmacokinetics of a drug may not produce the desired results. Artificial neural network (ANN) provides a novel model-independent approach to pharmacokinetics and pharmacodynamics data. ANN model is created by supervised learning of 90 patients sample to predict the treatment strategy (lamivudine only and Lamivudine + Interferon) on the basis of viral load, liver function test, visit number, treatment duration, ethnic area, sex, and age. The model was trained with 68 (77.3%) samples and tested with 20 (22.7%) samples. The model produced 92% accuracy with 92.8% sensitivity and 83.3% specificity. |
---|