Cargando…

Prediction of N-myristoylation modification of proteins by SVM

Attachment of a myristoyl group to NH(2)-terminus of a nascent protein among protein post-translational modification (PTM) is called myristoylation. The myristate moiety of proteins plays an important role for their biological functions, such as regulation of membrane binding (HIV-1 Gag) and enzyme...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Wei, Sumikoshi, Kazuya, Nakamura, Shugo, Terada, Tohru, Shimizu, Kentaro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124801/
https://www.ncbi.nlm.nih.gov/pubmed/21738315
Descripción
Sumario:Attachment of a myristoyl group to NH(2)-terminus of a nascent protein among protein post-translational modification (PTM) is called myristoylation. The myristate moiety of proteins plays an important role for their biological functions, such as regulation of membrane binding (HIV-1 Gag) and enzyme activity (AMPK). Several predictors based on protein sequences alone are hitherto proposed. However, they produce a great number of false positive and false negative predictions; or they cannot be used for general purpose (i.e., taxon-specific); or threshold values of the decision rule of predictors need to be selected with cautiousness. Here, we present novel and taxon-free predictors based on protein primary structure. To identify myristoylated proteins accurately, we employ a widely used machinelearning algorithm, support vector machine (SVM). A series of SVM predictors are developed in the present study where various scales representing physicochemical and biological properties of amino acids (from the AAindex database) are used for numerical transformation of protein sequences. Of the predictors, the top ten achieve accuracies of >98% (the average value is 98.34%), and also the area under the ROC curve (AUC) values of >0.98. Compared with those of previous studies, the prediction accuracies are improved by about 3 to 4%.