Cargando…

Cognitive Control in Adolescence: Neural Underpinnings and Relation to Self-Report Behaviors

BACKGROUND: Adolescence is commonly characterized by impulsivity, poor decision-making, and lack of foresight. However, the developmental neural underpinnings of these characteristics are not well established. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that these adolescent behaviors are...

Descripción completa

Detalles Bibliográficos
Autores principales: Andrews-Hanna, Jessica R., Mackiewicz Seghete, Kristen L., Claus, Eric D., Burgess, Gregory C., Ruzic, Luka, Banich, Marie T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125248/
https://www.ncbi.nlm.nih.gov/pubmed/21738725
http://dx.doi.org/10.1371/journal.pone.0021598
Descripción
Sumario:BACKGROUND: Adolescence is commonly characterized by impulsivity, poor decision-making, and lack of foresight. However, the developmental neural underpinnings of these characteristics are not well established. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that these adolescent behaviors are linked to under-developed proactive control mechanisms, the present study employed a hybrid block/event-related functional Magnetic Resonance Imaging (fMRI) Stroop paradigm combined with self-report questionnaires in a large sample of adolescents and adults, ranging in age from 14 to 25. Compared to adults, adolescents under-activated a set of brain regions implicated in proactive top-down control across task blocks comprised of difficult and easy trials. Moreover, the magnitude of lateral prefrontal activity in adolescents predicted self-report measures of impulse control, foresight, and resistance to peer pressure. Consistent with reactive compensatory mechanisms to reduced proactive control, older adolescents exhibited elevated transient activity in regions implicated in response-related interference resolution. CONCLUSIONS/SIGNIFICANCE: Collectively, these results suggest that maturation of cognitive control may be partly mediated by earlier development of neural systems supporting reactive control and delayed development of systems supporting proactive control. Importantly, the development of these mechanisms is associated with cognitive control in real-life behaviors.