Cargando…

Phosfinder: a web server for the identification of phosphate-binding sites on protein structures

Phosfinder is a web server for the identification of phosphate binding sites in protein structures. Phosfinder uses a structural comparison algorithm to scan a query structure against a set of known 3D phosphate binding motifs. Whenever a structural similarity between the query protein and a phospha...

Descripción completa

Detalles Bibliográficos
Autores principales: Parca, Luca, Mangone, Iolanda, Gherardini, Pier Federico, Ausiello, Gabriele, Helmer-Citterich, Manuela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125782/
https://www.ncbi.nlm.nih.gov/pubmed/21622655
http://dx.doi.org/10.1093/nar/gkr389
Descripción
Sumario:Phosfinder is a web server for the identification of phosphate binding sites in protein structures. Phosfinder uses a structural comparison algorithm to scan a query structure against a set of known 3D phosphate binding motifs. Whenever a structural similarity between the query protein and a phosphate binding motif is detected, the phosphate bound by the known motif is added to the protein structure thus representing a putative phosphate binding site. Predicted binding sites are then evaluated according to (i) their position with respect to the query protein solvent-excluded surface and (ii) the conservation of the binding residues in the protein family. The server accepts as input either the PDB code of the protein to be analyzed or a user-submitted structure in PDB format. All the search parameters are user modifiable. Phosfinder outputs a list of predicted binding sites with detailed information about their structural similarity with known phosphate binding motifs, and the conservation of the residues involved. A graphical applet allows the user to visualize the predicted binding sites on the query protein structure. The results on a set of 52 apo/holo structure pairs show that the performance of our method is largely unaffected by ligand-induced conformational changes. Phosfinder is available at http://phosfinder.bio.uniroma2.it.