Cargando…

Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding

BACKGROUND: Chemosensory signal transduction guides the behavior of many insects, including Anopheles gambiae, the major vector for human malaria in sub-Saharan Africa. To better understand the molecular basis of mosquito chemosensation we have used whole transcriptome RNA sequencing (RNA-seq) to co...

Descripción completa

Detalles Bibliográficos
Autores principales: Pitts, R Jason, Rinker, David C, Jones, Patrick L, Rokas, Antonis, Zwiebel, Laurence J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3126782/
https://www.ncbi.nlm.nih.gov/pubmed/21619637
http://dx.doi.org/10.1186/1471-2164-12-271
_version_ 1782207290551566336
author Pitts, R Jason
Rinker, David C
Jones, Patrick L
Rokas, Antonis
Zwiebel, Laurence J
author_facet Pitts, R Jason
Rinker, David C
Jones, Patrick L
Rokas, Antonis
Zwiebel, Laurence J
author_sort Pitts, R Jason
collection PubMed
description BACKGROUND: Chemosensory signal transduction guides the behavior of many insects, including Anopheles gambiae, the major vector for human malaria in sub-Saharan Africa. To better understand the molecular basis of mosquito chemosensation we have used whole transcriptome RNA sequencing (RNA-seq) to compare transcript expression profiles between the two major chemosensory tissues, the antennae and maxillary palps, of adult female and male An. gambiae. RESULTS: We compared chemosensory tissue transcriptomes to whole body transcriptomes of each sex to identify chemosensory enhanced genes. In the six data sets analyzed, we detected expression of nearly all known chemosensory genes and found them to be highly enriched in both olfactory tissues of males and females. While the maxillary palps of both sexes demonstrated strict chemosensory gene expression overlap, we observed acute differences in sensory specialization between male and female antennae. The relatively high expression levels of chemosensory genes in the female antennae reveal its role as an organ predominately assigned to chemosensation. Remarkably, the expression of these genes was highly conserved in the male antennae, but at much lower relative levels. Alternatively, consistent with a role in mating, the male antennae displayed significant enhancement of genes involved in audition, while the female enhancement of these genes was observed, but to a lesser degree. CONCLUSIONS: These findings suggest that the chemoreceptive spectrum, as defined by gene expression profiles, is largely similar in female and male An. gambiae. However, assuming sensory receptor expression levels are correlated with sensitivity in each case, we posit that male and female antennae are perceptive to the same stimuli, but possess inverse receptive prioritizations and sensitivities. Here we have demonstrated the use of RNA-seq to characterize the sensory specializations of an important disease vector and grounded future studies investigating chemosensory processes.
format Online
Article
Text
id pubmed-3126782
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-31267822011-06-30 Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding Pitts, R Jason Rinker, David C Jones, Patrick L Rokas, Antonis Zwiebel, Laurence J BMC Genomics Research Article BACKGROUND: Chemosensory signal transduction guides the behavior of many insects, including Anopheles gambiae, the major vector for human malaria in sub-Saharan Africa. To better understand the molecular basis of mosquito chemosensation we have used whole transcriptome RNA sequencing (RNA-seq) to compare transcript expression profiles between the two major chemosensory tissues, the antennae and maxillary palps, of adult female and male An. gambiae. RESULTS: We compared chemosensory tissue transcriptomes to whole body transcriptomes of each sex to identify chemosensory enhanced genes. In the six data sets analyzed, we detected expression of nearly all known chemosensory genes and found them to be highly enriched in both olfactory tissues of males and females. While the maxillary palps of both sexes demonstrated strict chemosensory gene expression overlap, we observed acute differences in sensory specialization between male and female antennae. The relatively high expression levels of chemosensory genes in the female antennae reveal its role as an organ predominately assigned to chemosensation. Remarkably, the expression of these genes was highly conserved in the male antennae, but at much lower relative levels. Alternatively, consistent with a role in mating, the male antennae displayed significant enhancement of genes involved in audition, while the female enhancement of these genes was observed, but to a lesser degree. CONCLUSIONS: These findings suggest that the chemoreceptive spectrum, as defined by gene expression profiles, is largely similar in female and male An. gambiae. However, assuming sensory receptor expression levels are correlated with sensitivity in each case, we posit that male and female antennae are perceptive to the same stimuli, but possess inverse receptive prioritizations and sensitivities. Here we have demonstrated the use of RNA-seq to characterize the sensory specializations of an important disease vector and grounded future studies investigating chemosensory processes. BioMed Central 2011-05-27 /pmc/articles/PMC3126782/ /pubmed/21619637 http://dx.doi.org/10.1186/1471-2164-12-271 Text en Copyright ©2011 Pitts et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Pitts, R Jason
Rinker, David C
Jones, Patrick L
Rokas, Antonis
Zwiebel, Laurence J
Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding
title Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding
title_full Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding
title_fullStr Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding
title_full_unstemmed Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding
title_short Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding
title_sort transcriptome profiling of chemosensory appendages in the malaria vector anopheles gambiae reveals tissue- and sex-specific signatures of odor coding
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3126782/
https://www.ncbi.nlm.nih.gov/pubmed/21619637
http://dx.doi.org/10.1186/1471-2164-12-271
work_keys_str_mv AT pittsrjason transcriptomeprofilingofchemosensoryappendagesinthemalariavectoranophelesgambiaerevealstissueandsexspecificsignaturesofodorcoding
AT rinkerdavidc transcriptomeprofilingofchemosensoryappendagesinthemalariavectoranophelesgambiaerevealstissueandsexspecificsignaturesofodorcoding
AT jonespatrickl transcriptomeprofilingofchemosensoryappendagesinthemalariavectoranophelesgambiaerevealstissueandsexspecificsignaturesofodorcoding
AT rokasantonis transcriptomeprofilingofchemosensoryappendagesinthemalariavectoranophelesgambiaerevealstissueandsexspecificsignaturesofodorcoding
AT zwiebellaurencej transcriptomeprofilingofchemosensoryappendagesinthemalariavectoranophelesgambiaerevealstissueandsexspecificsignaturesofodorcoding