Cargando…
Interactions between Population Density of the Colorado Potato Beetle, Leptinotarsa decemlineata, and Herbicide Rate for Suppression of Solanaceous Weeds
The presence of volunteer potato Solanum tuberosum L., cutleaf nightshade, S. triflorum N., and hairy nightshade, S. physalifolium Rusby (Solanales: Solanaceae), throughout potato crop rotations can diminish the effectiveness of crop rotations designed to control disease and pest problems associated...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
University of Wisconsin Library
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127376/ https://www.ncbi.nlm.nih.gov/pubmed/20298117 http://dx.doi.org/10.1673/031.008.3801 |
Sumario: | The presence of volunteer potato Solanum tuberosum L., cutleaf nightshade, S. triflorum N., and hairy nightshade, S. physalifolium Rusby (Solanales: Solanaceae), throughout potato crop rotations can diminish the effectiveness of crop rotations designed to control disease and pest problems associated with growing potatoes. In greenhouse bioassays, larvae of the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) were placed in population densities of 0, 5, 10, and 40 per potato (cv. Russet Burbank) plant and 0, 5, 10, and 15 per cutleaf nightshade and hairy nightshade plant. Plants were treated with different rates of herbicides including fluroxypyr, prometryn, and mesotrione rates, and the physiological response on the potato plants was assessed by weighing shoot biomass 14 days after treatment. Consistently, across all bioassays, rate response functions were shifted as L. decemlineata density increased, such that less herbicide was required to achieve control. For instance, the herbicide rate needed to achieve 90% reduction in potato biomass was reduced from 62 to 0 g fluroxypyr per hectare and 711 to 0 g prometryn per hectare as L. decemlineata density was increased to 40 larvae per plant. Herbivory at higher L. decemlineata population densities and herbicides above certain rates resulted in large reductions in cutleaf and hairy nightshade biomass. Differences in rate response functions among L. decemlineata population densities indicated that L. decemlineata contributed to weed suppression in combination with herbicides. These data suggest that integrated weed management systems targeting volunteer potato, cutleaf nightshade, and hairy nightshade can be more effective when herbicide applications are combined with herbivory by naturally occurring Colorado potato beetles. |
---|