Cargando…
How Haptic Size Sensations Improve Distance Perception
Determining distances to objects is one of the most ubiquitous perceptual tasks in everyday life. Nevertheless, it is challenging because the information from a single image confounds object size and distance. Though our brains frequently judge distances accurately, the underlying computations emplo...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127804/ https://www.ncbi.nlm.nih.gov/pubmed/21738457 http://dx.doi.org/10.1371/journal.pcbi.1002080 |
_version_ | 1782207375674966016 |
---|---|
author | Battaglia, Peter W. Kersten, Daniel Schrater, Paul R. |
author_facet | Battaglia, Peter W. Kersten, Daniel Schrater, Paul R. |
author_sort | Battaglia, Peter W. |
collection | PubMed |
description | Determining distances to objects is one of the most ubiquitous perceptual tasks in everyday life. Nevertheless, it is challenging because the information from a single image confounds object size and distance. Though our brains frequently judge distances accurately, the underlying computations employed by the brain are not well understood. Our work illuminates these computions by formulating a family of probabilistic models that encompass a variety of distinct hypotheses about distance and size perception. We compare these models' predictions to a set of human distance judgments in an interception experiment and use Bayesian analysis tools to quantitatively select the best hypothesis on the basis of its explanatory power and robustness over experimental data. The central question is: whether, and how, human distance perception incorporates size cues to improve accuracy. Our conclusions are: 1) humans incorporate haptic object size sensations for distance perception, 2) the incorporation of haptic sensations is suboptimal given their reliability, 3) humans use environmentally accurate size and distance priors, 4) distance judgments are produced by perceptual “posterior sampling”. In addition, we compared our model's estimated sensory and motor noise parameters with previously reported measurements in the perceptual literature and found good correspondence between them. Taken together, these results represent a major step forward in establishing the computational underpinnings of human distance perception and the role of size information. |
format | Online Article Text |
id | pubmed-3127804 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31278042011-07-07 How Haptic Size Sensations Improve Distance Perception Battaglia, Peter W. Kersten, Daniel Schrater, Paul R. PLoS Comput Biol Research Article Determining distances to objects is one of the most ubiquitous perceptual tasks in everyday life. Nevertheless, it is challenging because the information from a single image confounds object size and distance. Though our brains frequently judge distances accurately, the underlying computations employed by the brain are not well understood. Our work illuminates these computions by formulating a family of probabilistic models that encompass a variety of distinct hypotheses about distance and size perception. We compare these models' predictions to a set of human distance judgments in an interception experiment and use Bayesian analysis tools to quantitatively select the best hypothesis on the basis of its explanatory power and robustness over experimental data. The central question is: whether, and how, human distance perception incorporates size cues to improve accuracy. Our conclusions are: 1) humans incorporate haptic object size sensations for distance perception, 2) the incorporation of haptic sensations is suboptimal given their reliability, 3) humans use environmentally accurate size and distance priors, 4) distance judgments are produced by perceptual “posterior sampling”. In addition, we compared our model's estimated sensory and motor noise parameters with previously reported measurements in the perceptual literature and found good correspondence between them. Taken together, these results represent a major step forward in establishing the computational underpinnings of human distance perception and the role of size information. Public Library of Science 2011-06-30 /pmc/articles/PMC3127804/ /pubmed/21738457 http://dx.doi.org/10.1371/journal.pcbi.1002080 Text en Battaglia et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Battaglia, Peter W. Kersten, Daniel Schrater, Paul R. How Haptic Size Sensations Improve Distance Perception |
title | How Haptic Size Sensations Improve Distance Perception |
title_full | How Haptic Size Sensations Improve Distance Perception |
title_fullStr | How Haptic Size Sensations Improve Distance Perception |
title_full_unstemmed | How Haptic Size Sensations Improve Distance Perception |
title_short | How Haptic Size Sensations Improve Distance Perception |
title_sort | how haptic size sensations improve distance perception |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127804/ https://www.ncbi.nlm.nih.gov/pubmed/21738457 http://dx.doi.org/10.1371/journal.pcbi.1002080 |
work_keys_str_mv | AT battagliapeterw howhapticsizesensationsimprovedistanceperception AT kerstendaniel howhapticsizesensationsimprovedistanceperception AT schraterpaulr howhapticsizesensationsimprovedistanceperception |