Cargando…
Evaluating methods for ranking differentially expressed genes applied to microArray quality control data
BACKGROUND: Statistical methods for ranking differentially expressed genes (DEGs) from gene expression data should be evaluated with regard to high sensitivity, specificity, and reproducibility. In our previous studies, we evaluated eight gene ranking methods applied to only Affymetrix GeneChip data...
Autores principales: | Kadota, Koji, Shimizu, Kentaro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128035/ https://www.ncbi.nlm.nih.gov/pubmed/21639945 http://dx.doi.org/10.1186/1471-2105-12-227 |
Ejemplares similares
-
Ranking differentially expressed genes from Affymetrix gene expression data: methods with reproducibility, sensitivity, and specificity
por: Kadota, Koji, et al.
Publicado: (2009) -
A weighted average difference method for detecting differentially expressed genes from microarray data
por: Kadota, Koji, et al.
Publicado: (2008) -
Evaluation of Two Outlier-Detection-Based Methods for Detecting Tissue-Selective Genes from Microarray Data
por: Kadota, Koji, et al.
Publicado: (2007) -
Evaluation of methods for differential expression analysis on multi-group RNA-seq count data
por: Tang, Min, et al.
Publicado: (2015) -
Differential expression analysis using a model-based gene clustering algorithm for RNA-seq data
por: Osabe, Takayuki, et al.
Publicado: (2021)