Cargando…
RegNetB: Predicting Relevant Regulator-Gene Relationships in Localized Prostate Tumor Samples
BACKGROUND: A central question in cancer biology is what changes cause a healthy cell to form a tumor. Gene expression data could provide insight into this question, but it is difficult to distinguish between a gene that causes a change in gene expression from a gene that is affected by this change....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128037/ https://www.ncbi.nlm.nih.gov/pubmed/21682879 http://dx.doi.org/10.1186/1471-2105-12-243 |
_version_ | 1782207409317478400 |
---|---|
author | Alvarez, Angel Woolf, Peter J |
author_facet | Alvarez, Angel Woolf, Peter J |
author_sort | Alvarez, Angel |
collection | PubMed |
description | BACKGROUND: A central question in cancer biology is what changes cause a healthy cell to form a tumor. Gene expression data could provide insight into this question, but it is difficult to distinguish between a gene that causes a change in gene expression from a gene that is affected by this change. Furthermore, the proteins that regulate gene expression are often themselves not regulated at the transcriptional level. Here we propose a Bayesian modeling framework we term RegNetB that uses mechanistic information about the gene regulatory network to distinguish between factors that cause a change in expression and genes that are affected by the change. We test this framework using human gene expression data describing localized prostate cancer progression. RESULTS: The top regulatory relationships identified by RegNetB include the regulation of RLN1, RLN2, by PAX4, the regulation of ACPP (PAP) by JUN, BACH1 and BACH2, and the co-regulation of PGC and GDF15 by MAZ and TAF8. These target genes are known to participate in tumor progression, but the suggested regulatory roles of PAX4, BACH1, BACH2, MAZ and TAF8 in the process is new. CONCLUSION: Integrating gene expression data and regulatory topologies can aid in identifying potentially causal mechanisms for observed changes in gene expression. |
format | Online Article Text |
id | pubmed-3128037 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31280372011-07-01 RegNetB: Predicting Relevant Regulator-Gene Relationships in Localized Prostate Tumor Samples Alvarez, Angel Woolf, Peter J BMC Bioinformatics Research Article BACKGROUND: A central question in cancer biology is what changes cause a healthy cell to form a tumor. Gene expression data could provide insight into this question, but it is difficult to distinguish between a gene that causes a change in gene expression from a gene that is affected by this change. Furthermore, the proteins that regulate gene expression are often themselves not regulated at the transcriptional level. Here we propose a Bayesian modeling framework we term RegNetB that uses mechanistic information about the gene regulatory network to distinguish between factors that cause a change in expression and genes that are affected by the change. We test this framework using human gene expression data describing localized prostate cancer progression. RESULTS: The top regulatory relationships identified by RegNetB include the regulation of RLN1, RLN2, by PAX4, the regulation of ACPP (PAP) by JUN, BACH1 and BACH2, and the co-regulation of PGC and GDF15 by MAZ and TAF8. These target genes are known to participate in tumor progression, but the suggested regulatory roles of PAX4, BACH1, BACH2, MAZ and TAF8 in the process is new. CONCLUSION: Integrating gene expression data and regulatory topologies can aid in identifying potentially causal mechanisms for observed changes in gene expression. BioMed Central 2011-06-17 /pmc/articles/PMC3128037/ /pubmed/21682879 http://dx.doi.org/10.1186/1471-2105-12-243 Text en Copyright ©2011 Alvarez and Woolf; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Alvarez, Angel Woolf, Peter J RegNetB: Predicting Relevant Regulator-Gene Relationships in Localized Prostate Tumor Samples |
title | RegNetB: Predicting Relevant Regulator-Gene Relationships in Localized Prostate Tumor Samples |
title_full | RegNetB: Predicting Relevant Regulator-Gene Relationships in Localized Prostate Tumor Samples |
title_fullStr | RegNetB: Predicting Relevant Regulator-Gene Relationships in Localized Prostate Tumor Samples |
title_full_unstemmed | RegNetB: Predicting Relevant Regulator-Gene Relationships in Localized Prostate Tumor Samples |
title_short | RegNetB: Predicting Relevant Regulator-Gene Relationships in Localized Prostate Tumor Samples |
title_sort | regnetb: predicting relevant regulator-gene relationships in localized prostate tumor samples |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128037/ https://www.ncbi.nlm.nih.gov/pubmed/21682879 http://dx.doi.org/10.1186/1471-2105-12-243 |
work_keys_str_mv | AT alvarezangel regnetbpredictingrelevantregulatorgenerelationshipsinlocalizedprostatetumorsamples AT woolfpeterj regnetbpredictingrelevantregulatorgenerelationshipsinlocalizedprostatetumorsamples |