Cargando…
Comparison of the Choice Effect and the Distance Effect in a Number-Comparison Task by fMRI
Behavioral and neurophysiological studies of numerical comparisons have shown a “distance effect,” whereby smaller numerical distances between two digits are associated with longer response times and higher activity in the parietal region. In this experiment, we introduced a two-choice condition (be...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128082/ https://www.ncbi.nlm.nih.gov/pubmed/21738777 http://dx.doi.org/10.1371/journal.pone.0021716 |
Sumario: | Behavioral and neurophysiological studies of numerical comparisons have shown a “distance effect,” whereby smaller numerical distances between two digits are associated with longer response times and higher activity in the parietal region. In this experiment, we introduced a two-choice condition (between either the smaller/lower or the larger/higher of two digits) and examined its effect on brain activity by fMRI. We observed longer response times and greater activity with the choice of smaller numbers (“choice effect”) in several brain regions including the right temporo–parietal region, (pre)cuneus, superior temporal sulcus, precentral gyrus, superior frontal gyrus, bilateral insula, and anterior cingulate cortex. These regions correspond to areas that have been suggested to play a role in attentional shift and response conflict. However, brain activity associated with the distance effect disappeared even though the behavioral distance effect remained. Despite the absence of the distance effect on brain activity, several areas changed activity in relation to response time, including regions that were reported to change activity in both a distance effect and a reaction-time-related manner. The result suggested that the level of task load may change the activity of regions that are responsible for magnitude detection. |
---|