Cargando…

Human cryptochrome exhibits light-dependent magnetosensitivity

Humans are not believed to have a magnetic sense, even though many animals use the Earth's magnetic field for orientation and navigation. One model of magnetosensing in animals proposes that geomagnetic fields are perceived by light-sensitive chemical reactions involving the flavoprotein crypto...

Descripción completa

Detalles Bibliográficos
Autores principales: Foley, Lauren E., Gegear, Robert J., Reppert, Steven M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128388/
https://www.ncbi.nlm.nih.gov/pubmed/21694704
http://dx.doi.org/10.1038/ncomms1364
Descripción
Sumario:Humans are not believed to have a magnetic sense, even though many animals use the Earth's magnetic field for orientation and navigation. One model of magnetosensing in animals proposes that geomagnetic fields are perceived by light-sensitive chemical reactions involving the flavoprotein cryptochrome (CRY). Here we show using a transgenic approach that human CRY2, which is heavily expressed in the retina, can function as a magnetosensor in the magnetoreception system of Drosophila and that it does so in a light-dependent manner. The results show that human CRY2 has the molecular capability to function as a light-sensitive magnetosensor and reopen an area of sensory biology that is ready for further exploration in humans.