Cargando…
Using statistical and machine learning to help institutions detect suspicious access to electronic health records
OBJECTIVE: To determine whether statistical and machine-learning methods, when applied to electronic health record (EHR) access data, could help identify suspicious (ie, potentially inappropriate) access to EHRs. METHODS: From EHR access logs and other organizational data collected over a 2-month pe...
Autores principales: | Boxwala, Aziz A, Kim, Jihoon, Grillo, Janice M, Ohno-Machado, Lucila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Group
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128412/ https://www.ncbi.nlm.nih.gov/pubmed/21672912 http://dx.doi.org/10.1136/amiajnl-2011-000217 |
Ejemplares similares
-
A patient-driven adaptive prediction technique to improve personalized risk estimation for clinical decision support
por: Jiang, Xiaoqian, et al.
Publicado: (2012) -
Blockchain-enabled immutable, distributed, and highly available clinical research activity logging system for federated COVID-19 data analysis from multiple institutions
por: Kuo, Tsung-Ting, et al.
Publicado: (2023) -
Calibrating predictive model estimates to support personalized medicine
por: Jiang, Xiaoqian, et al.
Publicado: (2011) -
Grid Binary LOgistic REgression (GLORE): building shared models without sharing data
por: Wu, Yuan, et al.
Publicado: (2012) -
HUGO: Hierarchical mUlti-reference Genome cOmpression for aligned reads
por: Li, Pinghao, et al.
Publicado: (2014)