Cargando…

Quantitative Mapping of Cocaine-Induced ΔFosB Expression in the Striatum of Male and Female Rats

ΔFosB plays a critical role in drug-induced long-term changes in the brain. In the current study, we evaluated locomotor activity in male and female rats treated with saline or cocaine for 2 weeks and quantitatively mapped ΔFosB expression in the dorsal striatum and nucleus accumbens of each animal...

Descripción completa

Detalles Bibliográficos
Autores principales: Sato, Satoru M., Wissman, Anne Marie, McCollum, Andrew F., Woolley, Catherine S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128607/
https://www.ncbi.nlm.nih.gov/pubmed/21747956
http://dx.doi.org/10.1371/journal.pone.0021783
Descripción
Sumario:ΔFosB plays a critical role in drug-induced long-term changes in the brain. In the current study, we evaluated locomotor activity in male and female rats treated with saline or cocaine for 2 weeks and quantitatively mapped ΔFosB expression in the dorsal striatum and nucleus accumbens of each animal by using an anti-FosB antibody that recognizes ΔFosB isoforms preferentially. Behavioral analysis showed that while there was little difference between males and females that sensitized to cocaine, nonsensitizing rats showed a large sex difference. Nonsensitizing males showed low behavioral activation in response to cocaine on the first day of treatment, and their activity remained low. In contrast, nonsensitizing females showed high activation on the first day of treatment and their activity remained high. Western blot and immunohistochemical analyses indicated that basal levels of ΔFosB were higher in the nucleus accumbens than the dorsal striatum, but that the effect of cocaine on ΔFosB was greater in the dorsal striatum. Immunostaining showed that the effect of cocaine in both the dorsal striatum and nucleus accumbens was primarily to increase the intensity of ΔFosB immunoreactivity in individual neurons, rather than to increase the number of cells that express ΔFosB. Detailed mapping of ΔFosB-labeled nuclei showed that basal ΔFosB levels were highest in the medial portion of the dorsal striatum and dorsomedial accumbens, particularly adjacent to the lateral ventricle, whereas the cocaine-induced increase in ΔFosB was most pronounced in the lateral dorsal striatum, where basal ΔFosB expression was lowest. Sex differences in ΔFosB expression were small and independent of cocaine treatment. We discuss implications of the sex difference in locomotor activation and regionally-specific ΔFosB induction by cocaine.