Cargando…

Computational Opioid Prescribing: A Novel Application of Clinical Pharmacokinetics

We implemented a pharmacokinetics-based mathematical modeling technique using algebra to assist pre-scribers with point-of-care opioid dosing. We call this technique computational opioid prescribing (COP). Because population pharmacokinetic parameter values are needed to estimate drug dosing regimen...

Descripción completa

Detalles Bibliográficos
Autores principales: Linares, Oscar A, Linares, Annemarie L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Informa Healthcare 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128826/
https://www.ncbi.nlm.nih.gov/pubmed/21657860
http://dx.doi.org/10.3109/15360288.2011.573527
Descripción
Sumario:We implemented a pharmacokinetics-based mathematical modeling technique using algebra to assist pre-scribers with point-of-care opioid dosing. We call this technique computational opioid prescribing (COP). Because population pharmacokinetic parameter values are needed to estimate drug dosing regimen designs for individual patients using COP, and those values are not readily available to prescribers because they exist scattered in the vast pharmacology literature, we estimated the population pharmacokinetic parameter values for 12 commonly prescribed opioids from various sources using the bootstrap resampling technique. Our results show that opioid dosing regimen design, evaluation, and modification is feasible using COP. We conclude that COP is a new technique for the quantitative assessment of opioid dosing regimen design evaluation and adjustment, which may help prescribers to manage acute and chronic pain at the point-of-care. Potential benefits include opioid dose optimization and minimization of adverse opioid drug events, leading to potential improvement in patient treatment outcomes and safety.