Cargando…
Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method
BACKGROUND: The epidemic sizes of influenza A/H3N2, A/H1N1, and B infections vary from year to year in the United States. We use publicly available US Centers for Disease Control (CDC) influenza surveillance data between 1997 and 2009 to study the temporal dynamics of influenza over this period. MET...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130020/ https://www.ncbi.nlm.nih.gov/pubmed/21750666 http://dx.doi.org/10.1371/journal.pmed.1001051 |
_version_ | 1782207573804449792 |
---|---|
author | Goldstein, Edward Cobey, Sarah Takahashi, Saki Miller, Joel C. Lipsitch, Marc |
author_facet | Goldstein, Edward Cobey, Sarah Takahashi, Saki Miller, Joel C. Lipsitch, Marc |
author_sort | Goldstein, Edward |
collection | PubMed |
description | BACKGROUND: The epidemic sizes of influenza A/H3N2, A/H1N1, and B infections vary from year to year in the United States. We use publicly available US Centers for Disease Control (CDC) influenza surveillance data between 1997 and 2009 to study the temporal dynamics of influenza over this period. METHODS AND FINDINGS: Regional outpatient surveillance data on influenza-like illness (ILI) and virologic surveillance data were combined to define a weekly proxy for the incidence of each strain in the United States. All strains exhibited a negative association between their cumulative incidence proxy (CIP) for the whole season (from calendar week 40 of each year to calendar week 20 of the next year) and the CIP of the other two strains (the complementary CIP) from the start of the season up to calendar week 2 (or 3, 4, or 5) of the next year. We introduce a method to predict a particular strain's CIP for the whole season by following the incidence of each strain from the start of the season until either the CIP of the chosen strain or its complementary CIP exceed certain thresholds. The method yielded accurate predictions, which generally occurred within a few weeks of the peak of incidence of the chosen strain, sometimes after that peak. For the largest seasons in the data, which were dominated by A/H3N2, prediction of A/H3N2 incidence always occurred at least several weeks in advance of the peak. CONCLUSION: Early circulation of one influenza strain is associated with a reduced total incidence of the other strains, consistent with the presence of interference between subtypes. Routine ILI and virologic surveillance data can be combined using this new method to predict the relative size of each influenza strain's epidemic by following the change in incidence of a given strain in the context of the incidence of cocirculating strains. Please see later in the article for the Editors' Summary |
format | Online Article Text |
id | pubmed-3130020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31300202011-07-12 Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method Goldstein, Edward Cobey, Sarah Takahashi, Saki Miller, Joel C. Lipsitch, Marc PLoS Med Research Article BACKGROUND: The epidemic sizes of influenza A/H3N2, A/H1N1, and B infections vary from year to year in the United States. We use publicly available US Centers for Disease Control (CDC) influenza surveillance data between 1997 and 2009 to study the temporal dynamics of influenza over this period. METHODS AND FINDINGS: Regional outpatient surveillance data on influenza-like illness (ILI) and virologic surveillance data were combined to define a weekly proxy for the incidence of each strain in the United States. All strains exhibited a negative association between their cumulative incidence proxy (CIP) for the whole season (from calendar week 40 of each year to calendar week 20 of the next year) and the CIP of the other two strains (the complementary CIP) from the start of the season up to calendar week 2 (or 3, 4, or 5) of the next year. We introduce a method to predict a particular strain's CIP for the whole season by following the incidence of each strain from the start of the season until either the CIP of the chosen strain or its complementary CIP exceed certain thresholds. The method yielded accurate predictions, which generally occurred within a few weeks of the peak of incidence of the chosen strain, sometimes after that peak. For the largest seasons in the data, which were dominated by A/H3N2, prediction of A/H3N2 incidence always occurred at least several weeks in advance of the peak. CONCLUSION: Early circulation of one influenza strain is associated with a reduced total incidence of the other strains, consistent with the presence of interference between subtypes. Routine ILI and virologic surveillance data can be combined using this new method to predict the relative size of each influenza strain's epidemic by following the change in incidence of a given strain in the context of the incidence of cocirculating strains. Please see later in the article for the Editors' Summary Public Library of Science 2011-07-05 /pmc/articles/PMC3130020/ /pubmed/21750666 http://dx.doi.org/10.1371/journal.pmed.1001051 Text en Goldstein et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Goldstein, Edward Cobey, Sarah Takahashi, Saki Miller, Joel C. Lipsitch, Marc Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method |
title | Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method |
title_full | Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method |
title_fullStr | Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method |
title_full_unstemmed | Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method |
title_short | Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method |
title_sort | predicting the epidemic sizes of influenza a/h1n1, a/h3n2, and b: a statistical method |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130020/ https://www.ncbi.nlm.nih.gov/pubmed/21750666 http://dx.doi.org/10.1371/journal.pmed.1001051 |
work_keys_str_mv | AT goldsteinedward predictingtheepidemicsizesofinfluenzaah1n1ah3n2andbastatisticalmethod AT cobeysarah predictingtheepidemicsizesofinfluenzaah1n1ah3n2andbastatisticalmethod AT takahashisaki predictingtheepidemicsizesofinfluenzaah1n1ah3n2andbastatisticalmethod AT millerjoelc predictingtheepidemicsizesofinfluenzaah1n1ah3n2andbastatisticalmethod AT lipsitchmarc predictingtheepidemicsizesofinfluenzaah1n1ah3n2andbastatisticalmethod |