Cargando…

Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method

BACKGROUND: The epidemic sizes of influenza A/H3N2, A/H1N1, and B infections vary from year to year in the United States. We use publicly available US Centers for Disease Control (CDC) influenza surveillance data between 1997 and 2009 to study the temporal dynamics of influenza over this period. MET...

Descripción completa

Detalles Bibliográficos
Autores principales: Goldstein, Edward, Cobey, Sarah, Takahashi, Saki, Miller, Joel C., Lipsitch, Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130020/
https://www.ncbi.nlm.nih.gov/pubmed/21750666
http://dx.doi.org/10.1371/journal.pmed.1001051
_version_ 1782207573804449792
author Goldstein, Edward
Cobey, Sarah
Takahashi, Saki
Miller, Joel C.
Lipsitch, Marc
author_facet Goldstein, Edward
Cobey, Sarah
Takahashi, Saki
Miller, Joel C.
Lipsitch, Marc
author_sort Goldstein, Edward
collection PubMed
description BACKGROUND: The epidemic sizes of influenza A/H3N2, A/H1N1, and B infections vary from year to year in the United States. We use publicly available US Centers for Disease Control (CDC) influenza surveillance data between 1997 and 2009 to study the temporal dynamics of influenza over this period. METHODS AND FINDINGS: Regional outpatient surveillance data on influenza-like illness (ILI) and virologic surveillance data were combined to define a weekly proxy for the incidence of each strain in the United States. All strains exhibited a negative association between their cumulative incidence proxy (CIP) for the whole season (from calendar week 40 of each year to calendar week 20 of the next year) and the CIP of the other two strains (the complementary CIP) from the start of the season up to calendar week 2 (or 3, 4, or 5) of the next year. We introduce a method to predict a particular strain's CIP for the whole season by following the incidence of each strain from the start of the season until either the CIP of the chosen strain or its complementary CIP exceed certain thresholds. The method yielded accurate predictions, which generally occurred within a few weeks of the peak of incidence of the chosen strain, sometimes after that peak. For the largest seasons in the data, which were dominated by A/H3N2, prediction of A/H3N2 incidence always occurred at least several weeks in advance of the peak. CONCLUSION: Early circulation of one influenza strain is associated with a reduced total incidence of the other strains, consistent with the presence of interference between subtypes. Routine ILI and virologic surveillance data can be combined using this new method to predict the relative size of each influenza strain's epidemic by following the change in incidence of a given strain in the context of the incidence of cocirculating strains. Please see later in the article for the Editors' Summary
format Online
Article
Text
id pubmed-3130020
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-31300202011-07-12 Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method Goldstein, Edward Cobey, Sarah Takahashi, Saki Miller, Joel C. Lipsitch, Marc PLoS Med Research Article BACKGROUND: The epidemic sizes of influenza A/H3N2, A/H1N1, and B infections vary from year to year in the United States. We use publicly available US Centers for Disease Control (CDC) influenza surveillance data between 1997 and 2009 to study the temporal dynamics of influenza over this period. METHODS AND FINDINGS: Regional outpatient surveillance data on influenza-like illness (ILI) and virologic surveillance data were combined to define a weekly proxy for the incidence of each strain in the United States. All strains exhibited a negative association between their cumulative incidence proxy (CIP) for the whole season (from calendar week 40 of each year to calendar week 20 of the next year) and the CIP of the other two strains (the complementary CIP) from the start of the season up to calendar week 2 (or 3, 4, or 5) of the next year. We introduce a method to predict a particular strain's CIP for the whole season by following the incidence of each strain from the start of the season until either the CIP of the chosen strain or its complementary CIP exceed certain thresholds. The method yielded accurate predictions, which generally occurred within a few weeks of the peak of incidence of the chosen strain, sometimes after that peak. For the largest seasons in the data, which were dominated by A/H3N2, prediction of A/H3N2 incidence always occurred at least several weeks in advance of the peak. CONCLUSION: Early circulation of one influenza strain is associated with a reduced total incidence of the other strains, consistent with the presence of interference between subtypes. Routine ILI and virologic surveillance data can be combined using this new method to predict the relative size of each influenza strain's epidemic by following the change in incidence of a given strain in the context of the incidence of cocirculating strains. Please see later in the article for the Editors' Summary Public Library of Science 2011-07-05 /pmc/articles/PMC3130020/ /pubmed/21750666 http://dx.doi.org/10.1371/journal.pmed.1001051 Text en Goldstein et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Goldstein, Edward
Cobey, Sarah
Takahashi, Saki
Miller, Joel C.
Lipsitch, Marc
Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method
title Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method
title_full Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method
title_fullStr Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method
title_full_unstemmed Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method
title_short Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method
title_sort predicting the epidemic sizes of influenza a/h1n1, a/h3n2, and b: a statistical method
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130020/
https://www.ncbi.nlm.nih.gov/pubmed/21750666
http://dx.doi.org/10.1371/journal.pmed.1001051
work_keys_str_mv AT goldsteinedward predictingtheepidemicsizesofinfluenzaah1n1ah3n2andbastatisticalmethod
AT cobeysarah predictingtheepidemicsizesofinfluenzaah1n1ah3n2andbastatisticalmethod
AT takahashisaki predictingtheepidemicsizesofinfluenzaah1n1ah3n2andbastatisticalmethod
AT millerjoelc predictingtheepidemicsizesofinfluenzaah1n1ah3n2andbastatisticalmethod
AT lipsitchmarc predictingtheepidemicsizesofinfluenzaah1n1ah3n2andbastatisticalmethod