Cargando…
Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation
The effects of plant–microbe interactions between the hyperaccumulator Arabidopsis halleri and eight bacterial strains, isolated from the rhizosphere of A. halleri plants grown in a cadmium- and zinc-contaminated site, were analysed for shoot metal accumulation, shoot proteome, and the transcription...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130167/ https://www.ncbi.nlm.nih.gov/pubmed/21357773 http://dx.doi.org/10.1093/jxb/err015 |
_version_ | 1782207588561059840 |
---|---|
author | Farinati, Silvia DalCorso, Giovanni Panigati, Monica Furini, Antonella |
author_facet | Farinati, Silvia DalCorso, Giovanni Panigati, Monica Furini, Antonella |
author_sort | Farinati, Silvia |
collection | PubMed |
description | The effects of plant–microbe interactions between the hyperaccumulator Arabidopsis halleri and eight bacterial strains, isolated from the rhizosphere of A. halleri plants grown in a cadmium- and zinc-contaminated site, were analysed for shoot metal accumulation, shoot proteome, and the transcription of genes involved in plant metal homeostasis and hyperaccumulation. Cadmium and zinc concentrations were lower in the shoots of plants cultivated in the presence of these metals plus the selected bacterial strains compared with plants grown solely with these metals or, as previously reported, with plants grown with these metals plus the autochthonous rhizosphere-derived microorganisms. The shoot proteome of plants cultivated in the presence of these selected bacterial strains plus metals, showed an increased abundance of photosynthesis- and abiotic stress-related proteins (e.g. subunits of the photosynthetic complexes, Rubisco, superoxide dismutase, and malate dehydrogenase) counteracted by a decreased amount of plant defence-related proteins (e.g. endochitinases, vegetative storage proteins, and β-glucosidase). The transcription of several homeostasis genes was modulated by the microbial communities and by Cd and Zn content in the shoot. Altogether these results highlight the importance of plant-microbe interactions in plant protein expression and metal accumulation and emphasize the possibility of exploiting microbial consortia for increasing or decreasing shoot metal content. |
format | Online Article Text |
id | pubmed-3130167 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-31301672011-07-06 Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation Farinati, Silvia DalCorso, Giovanni Panigati, Monica Furini, Antonella J Exp Bot Research Papers The effects of plant–microbe interactions between the hyperaccumulator Arabidopsis halleri and eight bacterial strains, isolated from the rhizosphere of A. halleri plants grown in a cadmium- and zinc-contaminated site, were analysed for shoot metal accumulation, shoot proteome, and the transcription of genes involved in plant metal homeostasis and hyperaccumulation. Cadmium and zinc concentrations were lower in the shoots of plants cultivated in the presence of these metals plus the selected bacterial strains compared with plants grown solely with these metals or, as previously reported, with plants grown with these metals plus the autochthonous rhizosphere-derived microorganisms. The shoot proteome of plants cultivated in the presence of these selected bacterial strains plus metals, showed an increased abundance of photosynthesis- and abiotic stress-related proteins (e.g. subunits of the photosynthetic complexes, Rubisco, superoxide dismutase, and malate dehydrogenase) counteracted by a decreased amount of plant defence-related proteins (e.g. endochitinases, vegetative storage proteins, and β-glucosidase). The transcription of several homeostasis genes was modulated by the microbial communities and by Cd and Zn content in the shoot. Altogether these results highlight the importance of plant-microbe interactions in plant protein expression and metal accumulation and emphasize the possibility of exploiting microbial consortia for increasing or decreasing shoot metal content. Oxford University Press 2011-06 2011-02-28 /pmc/articles/PMC3130167/ /pubmed/21357773 http://dx.doi.org/10.1093/jxb/err015 Text en © 2011 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details) |
spellingShingle | Research Papers Farinati, Silvia DalCorso, Giovanni Panigati, Monica Furini, Antonella Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation |
title | Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation |
title_full | Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation |
title_fullStr | Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation |
title_full_unstemmed | Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation |
title_short | Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation |
title_sort | interaction between selected bacterial strains and arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130167/ https://www.ncbi.nlm.nih.gov/pubmed/21357773 http://dx.doi.org/10.1093/jxb/err015 |
work_keys_str_mv | AT farinatisilvia interactionbetweenselectedbacterialstrainsandarabidopsishallerimodulatesshootproteomeandcadmiumandzincaccumulation AT dalcorsogiovanni interactionbetweenselectedbacterialstrainsandarabidopsishallerimodulatesshootproteomeandcadmiumandzincaccumulation AT panigatimonica interactionbetweenselectedbacterialstrainsandarabidopsishallerimodulatesshootproteomeandcadmiumandzincaccumulation AT furiniantonella interactionbetweenselectedbacterialstrainsandarabidopsishallerimodulatesshootproteomeandcadmiumandzincaccumulation |