Cargando…

Pp6-FEH1 encodes an enzyme for degradation of highly polymerized levan and is transcriptionally induced by defoliation in timothy (Phleum pratense L.)

The ability of grasses to regrow after defoliation by cutting or grazing is a vital factor in their survival and an important trait when they are used as forage crops. In temperate grass species accumulating fructans, defoliation induces the activity of a fructan exohydrolase (FEH) that degrades fru...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamura, Ken-ichi, Sanada, Yasuharu, Tase, Kazuhiro, Komatsu, Toshinori, Yoshida, Midori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130170/
https://www.ncbi.nlm.nih.gov/pubmed/21317211
http://dx.doi.org/10.1093/jxb/err018
Descripción
Sumario:The ability of grasses to regrow after defoliation by cutting or grazing is a vital factor in their survival and an important trait when they are used as forage crops. In temperate grass species accumulating fructans, defoliation induces the activity of a fructan exohydrolase (FEH) that degrades fructans to serve as a carbon source for regrowth. Here, a cDNA from timothy was cloned, named Pp6-FEH1, that showed similarity to wheat fructan 6-exohydrolase (6-FEH). The recombinant enzyme expressed in Pichia pastoris completely degraded fructans that were composed mainly of β(2,6)-linked and linear fructans (levan) with a high degree of polymerization (DP) in the crown tissues of timothy. The substrate specificity of Pp6-FEH1 differed from previously characterized enzymes with 6-FEH activity in fructan-accumulating plants: (i) Pp6-FEH1 showed 6-FEH activity against levan (mean DP 20) that was 4-fold higher than against 6-kestotriose (DP 3), indicating that Pp6-FEH1 has a preference for β(2,6)-linked fructans with high DP; (ii) Pp6-FEH1 had significant activity against β(2,1)-linked fructans, but considerably less than against β(2,6)-linked fructans; (iii) Pp6-FEH1 had weak invertase activity, and its 6-FEH activity was inhibited slightly by sucrose. In the stubble of seedlings and in young haplocorms from adult timothy plants, transcripts of Pp6-FEH1 were significantly increased within 3 h of defoliation, followed by an increase in 6-FEH activity and in the degradation of fructans. These results suggest that Pp6-FEH1 plays a role in the degradation of fructans and the mobilization of carbon sources for regrowth after defoliation in timothy.