Cargando…
cn.FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate
Cost-effective oligonucleotide genotyping arrays like the Affymetrix SNP 6.0 are still the predominant technique to measure DNA copy number variations (CNVs). However, CNV detection methods for microarrays overestimate both the number and the size of CNV regions and, consequently, suffer from a high...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130288/ https://www.ncbi.nlm.nih.gov/pubmed/21486749 http://dx.doi.org/10.1093/nar/gkr197 |
_version_ | 1782207602592055296 |
---|---|
author | Clevert, Djork-Arné Mitterecker, Andreas Mayr, Andreas Klambauer, Günter Tuefferd, Marianne Bondt, An De Talloen, Willem Göhlmann, Hinrich Hochreiter, Sepp |
author_facet | Clevert, Djork-Arné Mitterecker, Andreas Mayr, Andreas Klambauer, Günter Tuefferd, Marianne Bondt, An De Talloen, Willem Göhlmann, Hinrich Hochreiter, Sepp |
author_sort | Clevert, Djork-Arné |
collection | PubMed |
description | Cost-effective oligonucleotide genotyping arrays like the Affymetrix SNP 6.0 are still the predominant technique to measure DNA copy number variations (CNVs). However, CNV detection methods for microarrays overestimate both the number and the size of CNV regions and, consequently, suffer from a high false discovery rate (FDR). A high FDR means that many CNVs are wrongly detected and therefore not associated with a disease in a clinical study, though correction for multiple testing takes them into account and thereby decreases the study's discovery power. For controlling the FDR, we propose a probabilistic latent variable model, ‘cn.FARMS’, which is optimized by a Bayesian maximum a posteriori approach. cn.FARMS controls the FDR through the information gain of the posterior over the prior. The prior represents the null hypothesis of copy number 2 for all samples from which the posterior can only deviate by strong and consistent signals in the data. On HapMap data, cn.FARMS clearly outperformed the two most prevalent methods with respect to sensitivity and FDR. The software cn.FARMS is publicly available as a R package at http://www.bioinf.jku.at/software/cnfarms/cnfarms.html. |
format | Online Article Text |
id | pubmed-3130288 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-31302882011-07-06 cn.FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate Clevert, Djork-Arné Mitterecker, Andreas Mayr, Andreas Klambauer, Günter Tuefferd, Marianne Bondt, An De Talloen, Willem Göhlmann, Hinrich Hochreiter, Sepp Nucleic Acids Res Methods Online Cost-effective oligonucleotide genotyping arrays like the Affymetrix SNP 6.0 are still the predominant technique to measure DNA copy number variations (CNVs). However, CNV detection methods for microarrays overestimate both the number and the size of CNV regions and, consequently, suffer from a high false discovery rate (FDR). A high FDR means that many CNVs are wrongly detected and therefore not associated with a disease in a clinical study, though correction for multiple testing takes them into account and thereby decreases the study's discovery power. For controlling the FDR, we propose a probabilistic latent variable model, ‘cn.FARMS’, which is optimized by a Bayesian maximum a posteriori approach. cn.FARMS controls the FDR through the information gain of the posterior over the prior. The prior represents the null hypothesis of copy number 2 for all samples from which the posterior can only deviate by strong and consistent signals in the data. On HapMap data, cn.FARMS clearly outperformed the two most prevalent methods with respect to sensitivity and FDR. The software cn.FARMS is publicly available as a R package at http://www.bioinf.jku.at/software/cnfarms/cnfarms.html. Oxford University Press 2011-07 2011-04-12 /pmc/articles/PMC3130288/ /pubmed/21486749 http://dx.doi.org/10.1093/nar/gkr197 Text en © The Author(s) 2011. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/2.5 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methods Online Clevert, Djork-Arné Mitterecker, Andreas Mayr, Andreas Klambauer, Günter Tuefferd, Marianne Bondt, An De Talloen, Willem Göhlmann, Hinrich Hochreiter, Sepp cn.FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate |
title | cn.FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate |
title_full | cn.FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate |
title_fullStr | cn.FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate |
title_full_unstemmed | cn.FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate |
title_short | cn.FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate |
title_sort | cn.farms: a latent variable model to detect copy number variations in microarray data with a low false discovery rate |
topic | Methods Online |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130288/ https://www.ncbi.nlm.nih.gov/pubmed/21486749 http://dx.doi.org/10.1093/nar/gkr197 |
work_keys_str_mv | AT clevertdjorkarne cnfarmsalatentvariablemodeltodetectcopynumbervariationsinmicroarraydatawithalowfalsediscoveryrate AT mittereckerandreas cnfarmsalatentvariablemodeltodetectcopynumbervariationsinmicroarraydatawithalowfalsediscoveryrate AT mayrandreas cnfarmsalatentvariablemodeltodetectcopynumbervariationsinmicroarraydatawithalowfalsediscoveryrate AT klambauergunter cnfarmsalatentvariablemodeltodetectcopynumbervariationsinmicroarraydatawithalowfalsediscoveryrate AT tuefferdmarianne cnfarmsalatentvariablemodeltodetectcopynumbervariationsinmicroarraydatawithalowfalsediscoveryrate AT bondtande cnfarmsalatentvariablemodeltodetectcopynumbervariationsinmicroarraydatawithalowfalsediscoveryrate AT talloenwillem cnfarmsalatentvariablemodeltodetectcopynumbervariationsinmicroarraydatawithalowfalsediscoveryrate AT gohlmannhinrich cnfarmsalatentvariablemodeltodetectcopynumbervariationsinmicroarraydatawithalowfalsediscoveryrate AT hochreitersepp cnfarmsalatentvariablemodeltodetectcopynumbervariationsinmicroarraydatawithalowfalsediscoveryrate |