Cargando…

Neuromorphic Silicon Neuron Circuits

Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon n...

Descripción completa

Detalles Bibliográficos
Autores principales: Indiveri, Giacomo, Linares-Barranco, Bernabé, Hamilton, Tara Julia, van Schaik, André, Etienne-Cummings, Ralph, Delbruck, Tobi, Liu, Shih-Chii, Dudek, Piotr, Häfliger, Philipp, Renaud, Sylvie, Schemmel, Johannes, Cauwenberghs, Gert, Arthur, John, Hynna, Kai, Folowosele, Fopefolu, Saighi, Sylvain, Serrano-Gotarredona, Teresa, Wijekoon, Jayawan, Wang, Yingxue, Boahen, Kwabena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130465/
https://www.ncbi.nlm.nih.gov/pubmed/21747754
http://dx.doi.org/10.3389/fnins.2011.00073
_version_ 1782207612279848960
author Indiveri, Giacomo
Linares-Barranco, Bernabé
Hamilton, Tara Julia
van Schaik, André
Etienne-Cummings, Ralph
Delbruck, Tobi
Liu, Shih-Chii
Dudek, Piotr
Häfliger, Philipp
Renaud, Sylvie
Schemmel, Johannes
Cauwenberghs, Gert
Arthur, John
Hynna, Kai
Folowosele, Fopefolu
Saighi, Sylvain
Serrano-Gotarredona, Teresa
Wijekoon, Jayawan
Wang, Yingxue
Boahen, Kwabena
author_facet Indiveri, Giacomo
Linares-Barranco, Bernabé
Hamilton, Tara Julia
van Schaik, André
Etienne-Cummings, Ralph
Delbruck, Tobi
Liu, Shih-Chii
Dudek, Piotr
Häfliger, Philipp
Renaud, Sylvie
Schemmel, Johannes
Cauwenberghs, Gert
Arthur, John
Hynna, Kai
Folowosele, Fopefolu
Saighi, Sylvain
Serrano-Gotarredona, Teresa
Wijekoon, Jayawan
Wang, Yingxue
Boahen, Kwabena
author_sort Indiveri, Giacomo
collection PubMed
description Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.
format Online
Article
Text
id pubmed-3130465
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Frontiers Research Foundation
record_format MEDLINE/PubMed
spelling pubmed-31304652011-07-11 Neuromorphic Silicon Neuron Circuits Indiveri, Giacomo Linares-Barranco, Bernabé Hamilton, Tara Julia van Schaik, André Etienne-Cummings, Ralph Delbruck, Tobi Liu, Shih-Chii Dudek, Piotr Häfliger, Philipp Renaud, Sylvie Schemmel, Johannes Cauwenberghs, Gert Arthur, John Hynna, Kai Folowosele, Fopefolu Saighi, Sylvain Serrano-Gotarredona, Teresa Wijekoon, Jayawan Wang, Yingxue Boahen, Kwabena Front Neurosci Neuroscience Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. Frontiers Research Foundation 2011-05-31 /pmc/articles/PMC3130465/ /pubmed/21747754 http://dx.doi.org/10.3389/fnins.2011.00073 Text en Copyright © 2011 Indiveri, Linares-Barranco, Hamilton, van Schaik, Etienne-Cummings, Delbruck, Liu, Dudek, Häfliger, Renaud, Schemmel, Cauwenberghs, Arthur, Hynna, Folowosele, Saïghi, Serrano-Gotarredona, Wijekoon, Wang and Boahen. http://www.frontiersin.org/licenseagreement This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.
spellingShingle Neuroscience
Indiveri, Giacomo
Linares-Barranco, Bernabé
Hamilton, Tara Julia
van Schaik, André
Etienne-Cummings, Ralph
Delbruck, Tobi
Liu, Shih-Chii
Dudek, Piotr
Häfliger, Philipp
Renaud, Sylvie
Schemmel, Johannes
Cauwenberghs, Gert
Arthur, John
Hynna, Kai
Folowosele, Fopefolu
Saighi, Sylvain
Serrano-Gotarredona, Teresa
Wijekoon, Jayawan
Wang, Yingxue
Boahen, Kwabena
Neuromorphic Silicon Neuron Circuits
title Neuromorphic Silicon Neuron Circuits
title_full Neuromorphic Silicon Neuron Circuits
title_fullStr Neuromorphic Silicon Neuron Circuits
title_full_unstemmed Neuromorphic Silicon Neuron Circuits
title_short Neuromorphic Silicon Neuron Circuits
title_sort neuromorphic silicon neuron circuits
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130465/
https://www.ncbi.nlm.nih.gov/pubmed/21747754
http://dx.doi.org/10.3389/fnins.2011.00073
work_keys_str_mv AT indiverigiacomo neuromorphicsiliconneuroncircuits
AT linaresbarrancobernabe neuromorphicsiliconneuroncircuits
AT hamiltontarajulia neuromorphicsiliconneuroncircuits
AT vanschaikandre neuromorphicsiliconneuroncircuits
AT etiennecummingsralph neuromorphicsiliconneuroncircuits
AT delbrucktobi neuromorphicsiliconneuroncircuits
AT liushihchii neuromorphicsiliconneuroncircuits
AT dudekpiotr neuromorphicsiliconneuroncircuits
AT hafligerphilipp neuromorphicsiliconneuroncircuits
AT renaudsylvie neuromorphicsiliconneuroncircuits
AT schemmeljohannes neuromorphicsiliconneuroncircuits
AT cauwenberghsgert neuromorphicsiliconneuroncircuits
AT arthurjohn neuromorphicsiliconneuroncircuits
AT hynnakai neuromorphicsiliconneuroncircuits
AT folowoselefopefolu neuromorphicsiliconneuroncircuits
AT saighisylvain neuromorphicsiliconneuroncircuits
AT serranogotarredonateresa neuromorphicsiliconneuroncircuits
AT wijekoonjayawan neuromorphicsiliconneuroncircuits
AT wangyingxue neuromorphicsiliconneuroncircuits
AT boahenkwabena neuromorphicsiliconneuroncircuits