Cargando…
Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods
The establishment of multiplex photoacoustic molecular imaging to characterize heterogeneous tissues requires the use of a tunable, thermally stable contrast agent targeted to specific cell types. We have developed a multiplex photoacoustic imaging technique which uses targeted silica-coated gold na...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130570/ https://www.ncbi.nlm.nih.gov/pubmed/21750761 http://dx.doi.org/10.1364/BOE.2.001828 |
Sumario: | The establishment of multiplex photoacoustic molecular imaging to characterize heterogeneous tissues requires the use of a tunable, thermally stable contrast agent targeted to specific cell types. We have developed a multiplex photoacoustic imaging technique which uses targeted silica-coated gold nanorods to distinguish cell inclusions in vitro. This paper describes the use of tunable targeted silica-coated gold nanorods (SiO(2)-AuNRs) as contrast agents for photoacoustic molecular imaging. SiO(2)-AuNRs with peak absorption wavelengths of 780 nm and 830 nm were targeted to cells expressing different cell receptors. Cells were incubated with the targeted SiO(2)-AuNRs, incorporated in a tissue phantom, and imaged using multiwavelength photoacoustic imaging. We used photoacoustic imaging and statistical correlation analysis to distinguish between the unique cell inclusions within the tissue phantom. |
---|