Cargando…

Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection

Utilizing the measured corneal birefringence from a data set of 150 eyes of 75 human subjects, an algorithm and related computer program, based on Müller-Stokes matrix calculus, were developed in MATLAB for assessing the influence of corneal birefringence on retinal birefringence scanning (RBS) and...

Descripción completa

Detalles Bibliográficos
Autores principales: Irsch, Kristina, Gramatikov, Boris, Wu, Yi-Kai, Guyton, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130581/
https://www.ncbi.nlm.nih.gov/pubmed/21750772
http://dx.doi.org/10.1364/BOE.2.001955
Descripción
Sumario:Utilizing the measured corneal birefringence from a data set of 150 eyes of 75 human subjects, an algorithm and related computer program, based on Müller-Stokes matrix calculus, were developed in MATLAB for assessing the influence of corneal birefringence on retinal birefringence scanning (RBS) and for converging upon an optical/mechanical design using wave plates (“wave-plate-enhanced RBS”) that allows foveal fixation detection essentially independently of corneal birefringence. The RBS computer model, and in particular the optimization algorithm, were verified with experimental human data using an available monocular RBS-based eye fixation monitor. Fixation detection using wave-plate-enhanced RBS is adaptable to less cooperative subjects, including young children at risk for developing amblyopia.