Cargando…
Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid
BACKGROUND: Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA) and abscisic acid (ABA) are two key phytohorm...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130657/ https://www.ncbi.nlm.nih.gov/pubmed/21668981 http://dx.doi.org/10.1186/1471-2229-11-105 |
_version_ | 1782207633590059008 |
---|---|
author | An, Yong-Qiang Lin, Li |
author_facet | An, Yong-Qiang Lin, Li |
author_sort | An, Yong-Qiang |
collection | PubMed |
description | BACKGROUND: Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA) and abscisic acid (ABA) are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. RESULTS: The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up-regulated by both GA and seed germination. Those genes and metabolic pathways are likely to be important parts of transcriptional regulatory networks underlying GA and ABA regulation of seed germination and seedling growth. CONCLUSIONS: The studies developed a model depicting transcriptional regulatory programs underlying barley germination and GA and ABA regulation of germination at gene, pathway and systems levels, and established a standard transcriptome reference for further integration with various -omics and biological data to illustrate biological networks underlying seed germination. The studies also generated a great amount of systems biological evidence for previously proposed hypotheses, and developed a number of new hypotheses on transcriptional regulation of seed germination for further experimental validation. |
format | Online Article Text |
id | pubmed-3130657 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31306572011-07-07 Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid An, Yong-Qiang Lin, Li BMC Plant Biol Research Article BACKGROUND: Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA) and abscisic acid (ABA) are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. RESULTS: The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up-regulated by both GA and seed germination. Those genes and metabolic pathways are likely to be important parts of transcriptional regulatory networks underlying GA and ABA regulation of seed germination and seedling growth. CONCLUSIONS: The studies developed a model depicting transcriptional regulatory programs underlying barley germination and GA and ABA regulation of germination at gene, pathway and systems levels, and established a standard transcriptome reference for further integration with various -omics and biological data to illustrate biological networks underlying seed germination. The studies also generated a great amount of systems biological evidence for previously proposed hypotheses, and developed a number of new hypotheses on transcriptional regulation of seed germination for further experimental validation. BioMed Central 2011-06-13 /pmc/articles/PMC3130657/ /pubmed/21668981 http://dx.doi.org/10.1186/1471-2229-11-105 Text en Copyright ©2011 An and Lin; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article An, Yong-Qiang Lin, Li Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid |
title | Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid |
title_full | Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid |
title_fullStr | Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid |
title_full_unstemmed | Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid |
title_short | Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid |
title_sort | transcriptional regulatory programs underlying barley germination and regulatory functions of gibberellin and abscisic acid |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130657/ https://www.ncbi.nlm.nih.gov/pubmed/21668981 http://dx.doi.org/10.1186/1471-2229-11-105 |
work_keys_str_mv | AT anyongqiang transcriptionalregulatoryprogramsunderlyingbarleygerminationandregulatoryfunctionsofgibberellinandabscisicacid AT linli transcriptionalregulatoryprogramsunderlyingbarleygerminationandregulatoryfunctionsofgibberellinandabscisicacid |