Cargando…
Epidemiology and treatment approaches in management of invasive fungal infections
Over the past 20 years, the number of invasive fungal infections has continued to persist, due primarily to the increased numbers of patients subjected to severe immunosuppression. Despite the development of more active, less toxic antifungal agents and the standard use of antifungal prophylaxis, in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130903/ https://www.ncbi.nlm.nih.gov/pubmed/21750627 http://dx.doi.org/10.2147/CLEP.S12502 |
Sumario: | Over the past 20 years, the number of invasive fungal infections has continued to persist, due primarily to the increased numbers of patients subjected to severe immunosuppression. Despite the development of more active, less toxic antifungal agents and the standard use of antifungal prophylaxis, invasive fungal infections (especially invasive mold infections) continue to be a significant factor in hematopoietic cell and solid organ transplantation outcomes, resulting in high mortality rates. Since the use of fluconazole as standard prophylaxis in the hematopoietic cell transplantation setting, invasive candidiasis has come under control, but no mold-active antifungal agent (except for posaconazole in the setting of acute myelogenous leukemia and myelodysplastic syndrome) has been shown to improve the survival rate over fluconazole. With the advent of new azole and echinocandin agents, we have seen the emergence of more azole-resistant and echinocandin-resistant fungi. The recent increase in zygomycosis seen in the hematopoietic cell transplantation setting may be due to the increased use of voriconazole. This has implications for the empiric approach to pulmonary invasive mold infections when zygomycosis cannot be ruled out. It is imperative that an amphotericin B product, an antifungal that has never developed resistance in over 50 years, be initiated. The clinical presentations of invasive mold infections and invasive candidiasis can be nonspecific and the diagnostic tests insensitive, so a high index of suspicion and immediate initiation of empiric therapy is required. Unfortunately, our currently available serologic tests do not predict infection ahead of disease, and, therefore cannot be used to initiate “preemptive” therapy. Also, the Aspergillus galactomannan test gives a false negative result in patients receiving antimold prophylaxis, ie, virtually all of our patients with hematologic malignancy and hematopoietic cell transplant recipients. We may eventually be able to select patients at highest risk for invasive fungal infections for prophylaxis by genetic testing. However, with our current armamentarium of antifungal agents and widespread use of prophylaxis in high-risk groups (hematologic malignancy, hematopoietic cell transplantation), we continue to see high incidence and mortality rates, and our future hope lies in reversing the immunosuppression or augmenting the immune system of these severely immunocompromised hosts by developing and utilizing immunotherapy, immunoprophylaxis, and vaccines. |
---|