Cargando…
EEGIFT: Group Independent Component Analysis for Event-Related EEG Data
Independent component analysis (ICA) is a powerful method for source separation and has been used for decomposition of EEG, MRI, and concurrent EEG-fMRI data. ICA is not naturally suited to draw group inferences since it is a non-trivial problem to identify and order components across individuals. O...
Autores principales: | Eichele, Tom, Rachakonda, Srinivas, Brakedal, Brage, Eikeland, Rune, Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130967/ https://www.ncbi.nlm.nih.gov/pubmed/21747835 http://dx.doi.org/10.1155/2011/129365 |
Ejemplares similares
-
Group-level component analyses of EEG: validation and evaluation
por: Huster, Rene J., et al.
Publicado: (2015) -
Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis
por: Li, Yi-Ou, et al.
Publicado: (2011) -
Memory Efficient PCA Methods for Large Group ICA
por: Rachakonda, Srinivas, et al.
Publicado: (2016) -
Group independent component analysis of MR spectra
por: Kalyanam, Ravi, et al.
Publicado: (2013) -
Mal-Adaptation of Event-Related EEG Responses Preceding Performance Errors
por: Eichele, Heike, et al.
Publicado: (2010)