Cargando…
Segmentation of Endothelial Cell Boundaries of Rabbit Aortic Images Using a Machine Learning Approach
This paper presents an automatic detection method for thin boundaries of silver-stained endothelial cells (ECs) imaged using light microscopy of endothelium mono-layers from rabbit aortas. To achieve this, a segmentation technique was developed, which relies on a rich feature space to describe the s...
Autores principales: | Iftikhar, Saadia, Bond, Andrew R., Wagan, Asim I., Weinberg, Peter D., Bharath, Anil A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3132519/ https://www.ncbi.nlm.nih.gov/pubmed/21760766 http://dx.doi.org/10.1155/2011/270247 |
Ejemplares similares
-
Learning to detect boundary information for brain image segmentation
por: Khaled, Afifa, et al.
Publicado: (2022) -
Convolutional autoencoder joint boundary and mask adversarial learning for fundus image segmentation
por: Zhang, Xu, et al.
Publicado: (2022) -
Role of endothelial permeability hotspots and endothelial mitosis in determining age-related patterns of macromolecule uptake by the rabbit aortic wall near branch points
por: Chooi, K. Yean, et al.
Publicado: (2016) -
A coarse-to-fine approach to prostate boundary segmentation in ultrasound images
por: Sahba, Farhang, et al.
Publicado: (2005) -
Mass Transport Properties of the Rabbit Aortic Wall
por: Bailey, Emma L., et al.
Publicado: (2015)