Cargando…
Improved biocompatibility of novel poly(L-lactic acid)/β-tricalcium phosphate scaffolds prepared by an organic solvent-free method
A porous poly(L-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) composite scaffold was fabricated using a novel technique comprising powder mixing, compression molding, low-temperature treatment, and particulate leaching without any organic solvent. The effect of this scaffold on osteoblast prolife...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133528/ https://www.ncbi.nlm.nih.gov/pubmed/21760732 http://dx.doi.org/10.2147/IJN.S20743 |
_version_ | 1782207908303339520 |
---|---|
author | Zhao, Xue-Feng Li, Xiao-Dong Kang, Yun-Qing Yuan, Quan |
author_facet | Zhao, Xue-Feng Li, Xiao-Dong Kang, Yun-Qing Yuan, Quan |
author_sort | Zhao, Xue-Feng |
collection | PubMed |
description | A porous poly(L-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) composite scaffold was fabricated using a novel technique comprising powder mixing, compression molding, low-temperature treatment, and particulate leaching without any organic solvent. The effect of this scaffold on osteoblast proliferation and differentiation was evaluated in vitro. The fabricated scaffold had a homogeneously interconnected porous structure with a porosity of 70% and compressive strength of 1.35 MPa. The methylthiazol tetrazolium values and alkaline phosphatase (ALP) activity of osteoblasts seeded on the solvent-free scaffold were significant higher than those of the control. Using real-time PCR, gene expressions of ALP, osteocalcin, and type 1 collagen were shown to be upregulated. As the method does not use any organic solvent, it eliminates problems associated with organic solvent residue and therefore improves the cell compatibility. It has a promising potential for the preparation of porous scaffold for bone tissue engineering. |
format | Online Article Text |
id | pubmed-3133528 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-31335282011-07-14 Improved biocompatibility of novel poly(L-lactic acid)/β-tricalcium phosphate scaffolds prepared by an organic solvent-free method Zhao, Xue-Feng Li, Xiao-Dong Kang, Yun-Qing Yuan, Quan Int J Nanomedicine Original Research A porous poly(L-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) composite scaffold was fabricated using a novel technique comprising powder mixing, compression molding, low-temperature treatment, and particulate leaching without any organic solvent. The effect of this scaffold on osteoblast proliferation and differentiation was evaluated in vitro. The fabricated scaffold had a homogeneously interconnected porous structure with a porosity of 70% and compressive strength of 1.35 MPa. The methylthiazol tetrazolium values and alkaline phosphatase (ALP) activity of osteoblasts seeded on the solvent-free scaffold were significant higher than those of the control. Using real-time PCR, gene expressions of ALP, osteocalcin, and type 1 collagen were shown to be upregulated. As the method does not use any organic solvent, it eliminates problems associated with organic solvent residue and therefore improves the cell compatibility. It has a promising potential for the preparation of porous scaffold for bone tissue engineering. Dove Medical Press 2011 2011-07-04 /pmc/articles/PMC3133528/ /pubmed/21760732 http://dx.doi.org/10.2147/IJN.S20743 Text en © 2011 Zhao et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. |
spellingShingle | Original Research Zhao, Xue-Feng Li, Xiao-Dong Kang, Yun-Qing Yuan, Quan Improved biocompatibility of novel poly(L-lactic acid)/β-tricalcium phosphate scaffolds prepared by an organic solvent-free method |
title | Improved biocompatibility of novel poly(L-lactic acid)/β-tricalcium phosphate scaffolds prepared by an organic solvent-free method |
title_full | Improved biocompatibility of novel poly(L-lactic acid)/β-tricalcium phosphate scaffolds prepared by an organic solvent-free method |
title_fullStr | Improved biocompatibility of novel poly(L-lactic acid)/β-tricalcium phosphate scaffolds prepared by an organic solvent-free method |
title_full_unstemmed | Improved biocompatibility of novel poly(L-lactic acid)/β-tricalcium phosphate scaffolds prepared by an organic solvent-free method |
title_short | Improved biocompatibility of novel poly(L-lactic acid)/β-tricalcium phosphate scaffolds prepared by an organic solvent-free method |
title_sort | improved biocompatibility of novel poly(l-lactic acid)/β-tricalcium phosphate scaffolds prepared by an organic solvent-free method |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133528/ https://www.ncbi.nlm.nih.gov/pubmed/21760732 http://dx.doi.org/10.2147/IJN.S20743 |
work_keys_str_mv | AT zhaoxuefeng improvedbiocompatibilityofnovelpolyllacticacidbtricalciumphosphatescaffoldspreparedbyanorganicsolventfreemethod AT lixiaodong improvedbiocompatibilityofnovelpolyllacticacidbtricalciumphosphatescaffoldspreparedbyanorganicsolventfreemethod AT kangyunqing improvedbiocompatibilityofnovelpolyllacticacidbtricalciumphosphatescaffoldspreparedbyanorganicsolventfreemethod AT yuanquan improvedbiocompatibilityofnovelpolyllacticacidbtricalciumphosphatescaffoldspreparedbyanorganicsolventfreemethod |