Cargando…
Conotoxin protein classification using free scores of words and support vector machines
BACKGROUND: Conotoxin has been proven to be effective in drug design and could be used to treat various disorders such as schizophrenia, neuromuscular disorders and chronic pain. With the rapidly growing interest in conotoxin, accurate conotoxin superfamily classification tools are desirable to syst...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133552/ https://www.ncbi.nlm.nih.gov/pubmed/21619696 http://dx.doi.org/10.1186/1471-2105-12-217 |
_version_ | 1782207913097428992 |
---|---|
author | Zaki, Nazar Wolfsheimer, Stefan Nuel, Gregory Khuri, Sawsan |
author_facet | Zaki, Nazar Wolfsheimer, Stefan Nuel, Gregory Khuri, Sawsan |
author_sort | Zaki, Nazar |
collection | PubMed |
description | BACKGROUND: Conotoxin has been proven to be effective in drug design and could be used to treat various disorders such as schizophrenia, neuromuscular disorders and chronic pain. With the rapidly growing interest in conotoxin, accurate conotoxin superfamily classification tools are desirable to systematize the increasing number of newly discovered sequences and structures. However, despite the significance and extensive experimental investigations on conotoxin, those tools have not been intensively explored. RESULTS: In this paper, we propose to consider suboptimal alignments of words with restricted length. We developed a scoring system based on local alignment partition functions, called free score. The scoring system plays the key role in the feature extraction step of support vector machine classification. In the classification of conotoxin proteins, our method, SVM-Freescore, features an improved sensitivity and specificity by approximately 5.864% and 3.76%, respectively, over previously reported methods. For the generalization purpose, SVM-Freescore was also applied to classify superfamilies from curated and high quality database such as ConoServer. The average computed sensitivity and specificity for the superfamily classification were found to be 0.9742 and 0.9917, respectively. CONCLUSIONS: The SVM-Freescore method is shown to be a useful sequence-based analysis tool for functional and structural characterization of conotoxin proteins. The datasets and the software are available at http://faculty.uaeu.ac.ae/nzaki/SVM-Freescore.htm. |
format | Online Article Text |
id | pubmed-3133552 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31335522011-07-12 Conotoxin protein classification using free scores of words and support vector machines Zaki, Nazar Wolfsheimer, Stefan Nuel, Gregory Khuri, Sawsan BMC Bioinformatics Research Article BACKGROUND: Conotoxin has been proven to be effective in drug design and could be used to treat various disorders such as schizophrenia, neuromuscular disorders and chronic pain. With the rapidly growing interest in conotoxin, accurate conotoxin superfamily classification tools are desirable to systematize the increasing number of newly discovered sequences and structures. However, despite the significance and extensive experimental investigations on conotoxin, those tools have not been intensively explored. RESULTS: In this paper, we propose to consider suboptimal alignments of words with restricted length. We developed a scoring system based on local alignment partition functions, called free score. The scoring system plays the key role in the feature extraction step of support vector machine classification. In the classification of conotoxin proteins, our method, SVM-Freescore, features an improved sensitivity and specificity by approximately 5.864% and 3.76%, respectively, over previously reported methods. For the generalization purpose, SVM-Freescore was also applied to classify superfamilies from curated and high quality database such as ConoServer. The average computed sensitivity and specificity for the superfamily classification were found to be 0.9742 and 0.9917, respectively. CONCLUSIONS: The SVM-Freescore method is shown to be a useful sequence-based analysis tool for functional and structural characterization of conotoxin proteins. The datasets and the software are available at http://faculty.uaeu.ac.ae/nzaki/SVM-Freescore.htm. BioMed Central 2011-05-29 /pmc/articles/PMC3133552/ /pubmed/21619696 http://dx.doi.org/10.1186/1471-2105-12-217 Text en Copyright ©2011 Zaki et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zaki, Nazar Wolfsheimer, Stefan Nuel, Gregory Khuri, Sawsan Conotoxin protein classification using free scores of words and support vector machines |
title | Conotoxin protein classification using free scores of words and support vector machines |
title_full | Conotoxin protein classification using free scores of words and support vector machines |
title_fullStr | Conotoxin protein classification using free scores of words and support vector machines |
title_full_unstemmed | Conotoxin protein classification using free scores of words and support vector machines |
title_short | Conotoxin protein classification using free scores of words and support vector machines |
title_sort | conotoxin protein classification using free scores of words and support vector machines |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133552/ https://www.ncbi.nlm.nih.gov/pubmed/21619696 http://dx.doi.org/10.1186/1471-2105-12-217 |
work_keys_str_mv | AT zakinazar conotoxinproteinclassificationusingfreescoresofwordsandsupportvectormachines AT wolfsheimerstefan conotoxinproteinclassificationusingfreescoresofwordsandsupportvectormachines AT nuelgregory conotoxinproteinclassificationusingfreescoresofwordsandsupportvectormachines AT khurisawsan conotoxinproteinclassificationusingfreescoresofwordsandsupportvectormachines |