Cargando…
Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems
BACKGROUND: Variable selection on high throughput biological data, such as gene expression or single nucleotide polymorphisms (SNPs), becomes inevitable to select relevant information and, therefore, to better characterize diseases or assess genetic structure. There are different ways to perform var...
Autores principales: | Lê Cao, Kim-Anh, Boitard, Simon, Besse, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133555/ https://www.ncbi.nlm.nih.gov/pubmed/21693065 http://dx.doi.org/10.1186/1471-2105-12-253 |
Ejemplares similares
-
Sparse canonical methods for biological data integration: application to a cross-platform study
por: Lê Cao, Kim-Anh, et al.
Publicado: (2009) -
Multiclass Sparse Bayesian Regression for fMRI-Based Prediction
por: Michel, Vincent, et al.
Publicado: (2011) -
Adaptive Sparse Multi-Block PLS Discriminant Analysis: An Integrative Method for Identifying Key Biomarkers from Multi-Omics Data
por: Zhang, Runzhi, et al.
Publicado: (2023) -
Automatic Detection of Epilepsy and Seizure Using Multiclass Sparse Extreme Learning Machine Classification
por: Wang, Yuanfa, et al.
Publicado: (2017) -
Evaluation of Classifier Performance for Multiclass Phenotype Discrimination in Untargeted Metabolomics
por: Trainor, Patrick J., et al.
Publicado: (2017)