Cargando…

Impact of Short-Term Systemic Hypoxia on Phagocytosis, Cytokine Production, and Transcription Factor Activation in Peripheral Blood Cells

Hypoxia frequently associated with certain physiologic and pathologic conditions influences numerous cellular functions. Because the effects of short-term hypoxia are incompletely understood, we examined phagocytosis and cytokine production as well as the activation of the transcription factors HIF-...

Descripción completa

Detalles Bibliográficos
Autores principales: Fritzenwanger, Michael, Jung, Christian, Goebel, Bjoern, Lauten, Alexander, Figulla, Hans R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134261/
https://www.ncbi.nlm.nih.gov/pubmed/21765619
http://dx.doi.org/10.1155/2011/429501
Descripción
Sumario:Hypoxia frequently associated with certain physiologic and pathologic conditions influences numerous cellular functions. Because the effects of short-term hypoxia are incompletely understood, we examined phagocytosis and cytokine production as well as the activation of the transcription factors HIF-1 and NFκB in peripheral blood cells of healthy volunteers exposed to an oxygen concentration equivalent to that found at a height of 5500 m. Furthermore, we analysed plasma HIF-1 and serum concentrations of various HIF-1-dependent genes. Results showed that short-term hypoxia increased phagocytosis in neutrophils without affecting monocyte phagocytosis. Hypoxia decreased basal TNFα concentration in monocytes and basal interferon γ concentration in CD4(+) T lymphocytes. In contrast, plasma HIF and serum VEGF concentrations were not affected by hypoxia, although serum EPO concentration was raised. In PBMC, hypoxia increased cytosolic HIF-1 concentration without affecting nuclear HIF-1 concentration and led to a rise in the nuclear NFκB in PBMC. Our results show that short-term hypoxia affects immune functions in healthy individuals. Furthermore, we speculate that the effects of hypoxia are not due to HIF-1, but are caused by the activation of NFκB .