Cargando…

Structural determinants crucial to the RNA chaperone activity of glycine-rich RNA-binding proteins 4 and 7 in Arabidopsis thaliana during the cold adaptation process

Although glycine-rich RNA-binding proteins (GRPs) have been determined to function as RNA chaperones during the cold adaptation process, the structural features relevant to this RNA chaperone activity remain largely unknown. To uncover which structural determinants are necessary for RNA chaperone ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Kwak, Kyung Jin, Park, Su Jung, Han, Ji Hoon, Kim, Min Kyung, Oh, Seung Han, Han, Yeon Soo, Kang, Hunseung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134357/
https://www.ncbi.nlm.nih.gov/pubmed/21511907
http://dx.doi.org/10.1093/jxb/err101
Descripción
Sumario:Although glycine-rich RNA-binding proteins (GRPs) have been determined to function as RNA chaperones during the cold adaptation process, the structural features relevant to this RNA chaperone activity remain largely unknown. To uncover which structural determinants are necessary for RNA chaperone activity of GRPs, the importance of the N-terminal RNA recognition motif (RRM) and the C-terminal glycine-rich domains of two Arabidopsis thaliana GRPs (AtGRP4 harbouring no RNA chaperone activity and AtGRP7 harbouring RNA chaperone activity) was assessed via domain swapping and mutation analyses. The results of domain swapping and deletion experiments showed that the domain sequences encompassing the N-terminal RRM of GRPs were found to be crucial to the ability to complement cold-sensitive Escherichia coli mutant cells under cold stress, RNA melting ability, and freezing tolerance ability in the grp7 loss-of-function Arabidopsis mutant. In particular, the N-terminal 24 amino acid extension of AtGRP4 impedes the RNA chaperone activity. Collectively, these results reveal that domain sequences and overall folding of GRPs governed by a specific modular arrangement of RRM and glycine-rich sequences are critical to the RNA chaperone activity of GRPs during the cold adaptation process in cells.