Cargando…

Protective Effect of Liposome-Encapsulated Glutathione in a Human Epidermal Model Exposed to a Mustard Gas Analog

Sulfur mustard or mustard gas (HD) and its monofunctional analog, 2-chloroethyl ethyl sulfide (CEES), or “half-mustard gas,” are alkylating agents that induce DNA damage, oxidative stress, and inflammation. HD/CEES are rapidly absorbed in the skin causing extensive injury. We hypothesize that antiox...

Descripción completa

Detalles Bibliográficos
Autores principales: Paromov, Victor, Kumari, Sudha, Brannon, Marianne, Kanaparthy, Naga S., Yang, Hongsong, Smith, Milton G., Stone, William L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135079/
https://www.ncbi.nlm.nih.gov/pubmed/21776256
http://dx.doi.org/10.1155/2011/109516
Descripción
Sumario:Sulfur mustard or mustard gas (HD) and its monofunctional analog, 2-chloroethyl ethyl sulfide (CEES), or “half-mustard gas,” are alkylating agents that induce DNA damage, oxidative stress, and inflammation. HD/CEES are rapidly absorbed in the skin causing extensive injury. We hypothesize that antioxidant liposomes that deliver both water-soluble and lipid-soluble antioxidants protect skin cells from immediate CEES-induced damage via attenuating oxidative stress. Liposomes containing water-soluble antioxidants and/or lipid-soluble antioxidants were evaluated using in vitro model systems. Initially, we found that liposomes containing encapsulated glutathione (GSH-liposomes) increased cell viability and attenuated production of reactive oxygen species (ROS) in HaCaT cells exposed to CEES. Next, GSH-liposomes were tested in a human epidermal model, EpiDerm. In the EpiDerm, GSH-liposomes administered simultaneously or 1 hour after CEES exposure (2.5 mM) increased cell viability, inhibited CEES-induced loss of ATP and attenuated changes in cellular morphology, but did not reduce caspase-3 activity. These findings paralleled the previously described in vivo protective effect of antioxidant liposomes in the rat lung and established the effectiveness of GSH-liposomes in a human epidermal model. This study provides a rationale for use of antioxidant liposomes against HD toxicity in the skin considering further verification in animal models exposed to HD.