Cargando…
Mesenchymal Stem Cell Therapy Modulates the Inflammatory Response in Experimental Traumatic Brain Injury
Therapy with mesenchymal stem cells (MSCs) has showed to be promising due to its immunomodulatory function. Traumatic brain injury (TBI) triggers immune response and release of inflammatory mediators, mainly cytokines, by glial cells creating a hostile microenvironment for endogenous neural stem cel...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135112/ https://www.ncbi.nlm.nih.gov/pubmed/21766025 http://dx.doi.org/10.1155/2011/564089 |
_version_ | 1782208060550283264 |
---|---|
author | Galindo, Layla T. Filippo, Thais R. M. Semedo, Patricia Ariza, Carolina B. Moreira, Caroline M. Camara, Niels O. S. Porcionatto, Marimelia A. |
author_facet | Galindo, Layla T. Filippo, Thais R. M. Semedo, Patricia Ariza, Carolina B. Moreira, Caroline M. Camara, Niels O. S. Porcionatto, Marimelia A. |
author_sort | Galindo, Layla T. |
collection | PubMed |
description | Therapy with mesenchymal stem cells (MSCs) has showed to be promising due to its immunomodulatory function. Traumatic brain injury (TBI) triggers immune response and release of inflammatory mediators, mainly cytokines, by glial cells creating a hostile microenvironment for endogenous neural stem cells (NSCs). We investigated the effects of factors secreted by MSCs on NSC in vitro and analyzed cytokines expression in vitro in a TBI model. Our in vitro results show that MSC-secreted factors increase NSC proliferation and induce higher expression of GFAP, indicating a tendency toward differentiation into astrocytes. In vivo experiments showed that MSC injection at an acute model of brain injury diminishes a broad profile of cytokines in the tissue, suggesting that MSC-secreted factors may modulate the inflammation at the injury site, which may be of interest to the development of a favorable microenvironment for endogenous NSC and consequently to repair the injured tissue. |
format | Online Article Text |
id | pubmed-3135112 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-31351122011-07-15 Mesenchymal Stem Cell Therapy Modulates the Inflammatory Response in Experimental Traumatic Brain Injury Galindo, Layla T. Filippo, Thais R. M. Semedo, Patricia Ariza, Carolina B. Moreira, Caroline M. Camara, Niels O. S. Porcionatto, Marimelia A. Neurol Res Int Research Article Therapy with mesenchymal stem cells (MSCs) has showed to be promising due to its immunomodulatory function. Traumatic brain injury (TBI) triggers immune response and release of inflammatory mediators, mainly cytokines, by glial cells creating a hostile microenvironment for endogenous neural stem cells (NSCs). We investigated the effects of factors secreted by MSCs on NSC in vitro and analyzed cytokines expression in vitro in a TBI model. Our in vitro results show that MSC-secreted factors increase NSC proliferation and induce higher expression of GFAP, indicating a tendency toward differentiation into astrocytes. In vivo experiments showed that MSC injection at an acute model of brain injury diminishes a broad profile of cytokines in the tissue, suggesting that MSC-secreted factors may modulate the inflammation at the injury site, which may be of interest to the development of a favorable microenvironment for endogenous NSC and consequently to repair the injured tissue. Hindawi Publishing Corporation 2011 2011-06-09 /pmc/articles/PMC3135112/ /pubmed/21766025 http://dx.doi.org/10.1155/2011/564089 Text en Copyright © 2011 Layla T. Galindo et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Galindo, Layla T. Filippo, Thais R. M. Semedo, Patricia Ariza, Carolina B. Moreira, Caroline M. Camara, Niels O. S. Porcionatto, Marimelia A. Mesenchymal Stem Cell Therapy Modulates the Inflammatory Response in Experimental Traumatic Brain Injury |
title | Mesenchymal Stem Cell Therapy Modulates the Inflammatory Response in Experimental Traumatic Brain Injury |
title_full | Mesenchymal Stem Cell Therapy Modulates the Inflammatory Response in Experimental Traumatic Brain Injury |
title_fullStr | Mesenchymal Stem Cell Therapy Modulates the Inflammatory Response in Experimental Traumatic Brain Injury |
title_full_unstemmed | Mesenchymal Stem Cell Therapy Modulates the Inflammatory Response in Experimental Traumatic Brain Injury |
title_short | Mesenchymal Stem Cell Therapy Modulates the Inflammatory Response in Experimental Traumatic Brain Injury |
title_sort | mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135112/ https://www.ncbi.nlm.nih.gov/pubmed/21766025 http://dx.doi.org/10.1155/2011/564089 |
work_keys_str_mv | AT galindolaylat mesenchymalstemcelltherapymodulatestheinflammatoryresponseinexperimentaltraumaticbraininjury AT filippothaisrm mesenchymalstemcelltherapymodulatestheinflammatoryresponseinexperimentaltraumaticbraininjury AT semedopatricia mesenchymalstemcelltherapymodulatestheinflammatoryresponseinexperimentaltraumaticbraininjury AT arizacarolinab mesenchymalstemcelltherapymodulatestheinflammatoryresponseinexperimentaltraumaticbraininjury AT moreiracarolinem mesenchymalstemcelltherapymodulatestheinflammatoryresponseinexperimentaltraumaticbraininjury AT camaranielsos mesenchymalstemcelltherapymodulatestheinflammatoryresponseinexperimentaltraumaticbraininjury AT porcionattomarimeliaa mesenchymalstemcelltherapymodulatestheinflammatoryresponseinexperimentaltraumaticbraininjury |