Cargando…

Herpesvirus entry mediator (TNFRSF14) regulates the persistence of T helper memory cell populations

Memory T helper cells (Th cells) play an important role in host defense against pathogens but also contribute to the pathogenesis of inflammatory disorders. We found that a soluble decoy lymphotoxin β receptor (LT-βR)–Fc, which can block tumor necrosis factor (TNF)–related ligands LIGHT (TNFSF14) an...

Descripción completa

Detalles Bibliográficos
Autores principales: Soroosh, Pejman, Doherty, Taylor A., So, Takanori, Mehta, Amit Kumar, Khorram, Naseem, Norris, Paula S., Scheu, Stefanie, Pfeffer, Klaus, Ware, Carl, Croft, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135347/
https://www.ncbi.nlm.nih.gov/pubmed/21402741
http://dx.doi.org/10.1084/jem.20101562
Descripción
Sumario:Memory T helper cells (Th cells) play an important role in host defense against pathogens but also contribute to the pathogenesis of inflammatory disorders. We found that a soluble decoy lymphotoxin β receptor (LT-βR)–Fc, which can block tumor necrosis factor (TNF)–related ligands LIGHT (TNFSF14) and LT-αβ binding to the herpesvirus entry mediator (HVEM) and the LT-βR, inhibited the accumulation of memory Th2 cells after antigen encounter and correspondingly reduced inflammatory responses in vivo. Showing that this was a function of the receptor for LIGHT, antigen-specific memory CD4 T cells deficient in HVEM were also unable to persist, despite having a normal immediate response to recall antigen. HVEM(−/−) memory Th2 cells displayed reduced activity of PKB (protein kinase B; Akt), and constitutively active Akt rescued their survival and restored strong inflammation after antigen rechallenge. This was not restricted to Th2 memory cells as HVEM-deficient Th1 memory cells were also impaired in surviving after encounter with recall antigen. Furthermore, the absence of LIGHT on T cells recapitulated the defect seen with the absence of HVEM, suggesting that activated T cells communicate through LIGHT–HVEM interactions. Collectively, our results demonstrate a critical role of HVEM signals in the persistence of large pools of memory CD4 T cells.