Cargando…
Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization
The mechanism by which the proapoptotic Bcl-2 family members Bax and Bak release cytochrome c from mitochondria is incompletely understood. In this paper, we show that activator BH3-only proteins bind tightly but transiently to the Bak hydrophobic BH3-binding groove to induce Bak oligomerization, li...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135403/ https://www.ncbi.nlm.nih.gov/pubmed/21727192 http://dx.doi.org/10.1083/jcb.201102027 |
Sumario: | The mechanism by which the proapoptotic Bcl-2 family members Bax and Bak release cytochrome c from mitochondria is incompletely understood. In this paper, we show that activator BH3-only proteins bind tightly but transiently to the Bak hydrophobic BH3-binding groove to induce Bak oligomerization, liposome permeabilization, mitochondrial cytochrome c release, and cell death. Analysis by surface plasmon resonance indicated that the initial binding of BH3-only proteins to Bak occurred with similar kinetics with or without detergent or mitochondrial lipids, but these reagents increase the strength of the Bak–BH3-only protein interaction. Point mutations in Bak and reciprocal mutations in the BH3-only proteins not only confirmed the identity of the interacting residues at the Bak–BH3-only protein interface but also demonstrated specificity of complex formation in vitro and in a cellular context. These observations indicate that transient protein–protein interactions involving the Bak BH3-binding groove initiate Bak oligomerization and activation. |
---|