Cargando…

Antihypertension Induced by Tanshinone IIA Isolated from the Roots of Salvia miltiorrhiza

Tanshinone IIA is one of the active principles in danshen (Salvia miltiorrhiza Bge) widely used in treatment of cardiovascular disorders. We investigated the effect of danshen or tanshinone IIA on blood pressure and its possible mechanisms. An i.p. injection of danshen at 10 mg kg(−1) significantly...

Descripción completa

Detalles Bibliográficos
Autores principales: Chan, Paul, Liu, I-Min, Li, Ying-Xiao, Yu, Wen-Jen, Cheng, Juei-Tang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135424/
https://www.ncbi.nlm.nih.gov/pubmed/19542183
http://dx.doi.org/10.1093/ecam/nep056
Descripción
Sumario:Tanshinone IIA is one of the active principles in danshen (Salvia miltiorrhiza Bge) widely used in treatment of cardiovascular disorders. We investigated the effect of danshen or tanshinone IIA on blood pressure and its possible mechanisms. An i.p. injection of danshen at 10 mg kg(−1) significantly lowered systolic blood pressure (SBP) of spontaneously hypertensive rats (SHRs) but failed to modify the SBP in normotensive Wistar-Kyoto rats (WKY). Oral administration of tanshinone IIA also decreased SBP in SHR but not in WKY. Tanshinone IIA produced a concentration-dependent relaxation in isolated SHR aortic rings precontracted with phenylephrine (10 nmol l(−1)) or potassium chloride (KCl) (40 mmol l(−1)). The relaxing effect of tanshinone IIA on tonic contraction of phenylephrine in isolated aortic rings without endothelium remained produced. Glibenclamide at concentration sufficient to block adenosine triphosphatase (ATP)-sensitive potassium (K(+)) channel attenuated this tanshinone IIA-induced relaxation that was not influenced by other inhibitors. We further investigated the effect of tanshinone IIA on the changes of intracellular calcium concentration ([Ca(2+)](i)) in cultured aortic smooth muscle (A7r5) cells using fura-2 as indicator. Tanshinone IIA decreased [Ca(2+)](i) elicited by phenylephrine (10 nmol l(−1)) or KCl (40 mmol l(−1)) in a concentration-dependent manner; glibenclamide, but not other inhibitors for K(+) channel, abated this effect. Our results suggest that tanshinone IIA acts as an active principle of danshen showing vasodilation through ATP-sensitive K(+) channel to lower [Ca(2+)](i).