Cargando…

The CSC is required for complete radial spoke assembly and wild-type ciliary motility

The ubiquitous calcium binding protein, calmodulin (CaM), plays a major role in regulating the motility of all eukaryotic cilia and flagella. We previously identified a CaM and Spoke associated Complex (CSC) and provided evidence that this complex mediates regulatory signals between the radial spoke...

Descripción completa

Detalles Bibliográficos
Autores principales: Dymek, Erin E., Heuser, Thomas, Nicastro, Daniela, Smith, Elizabeth F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135477/
https://www.ncbi.nlm.nih.gov/pubmed/21613541
http://dx.doi.org/10.1091/mbc.E11-03-0271
Descripción
Sumario:The ubiquitous calcium binding protein, calmodulin (CaM), plays a major role in regulating the motility of all eukaryotic cilia and flagella. We previously identified a CaM and Spoke associated Complex (CSC) and provided evidence that this complex mediates regulatory signals between the radial spokes and dynein arms. We have now used an artificial microRNA (amiRNA) approach to reduce expression of two CSC subunits in Chlamydomonas. For all amiRNA mutants, the entire CSC is lacking or severely reduced in flagella. Structural studies of mutant axonemes revealed that assembly of radial spoke 2 is defective. Furthermore, analysis of both flagellar beating and microtubule sliding in vitro demonstrates that the CSC plays a critical role in modulating dynein activity. Our results not only indicate that the CSC is required for spoke assembly and wild-type motility, but also provide evidence for heterogeneity among the radial spokes.