Cargando…
San-Huang-Xie-Xin-Tang Protects against Activated Microglia- and 6-OHDA-Induced Toxicity in Neuronal SH-SY5Y Cells
San-Huang-Xie-Xin-Tang (SHXT), composed of Coptidis rhizoma, Scutellariae radix and Rhei rhizoma, is a traditional Chinese herbal medicine used to treat gastritis, gastric bleeding and peptic ulcers. This study investigated the neuroprotective effects of SHXT on microglia-mediated neurotoxicity usin...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135633/ https://www.ncbi.nlm.nih.gov/pubmed/19339484 http://dx.doi.org/10.1093/ecam/nep025 |
_version_ | 1782208138551754752 |
---|---|
author | Shih, Yu-Tzu Chen, Ing-Jun Wu, Yang-Chang Lo, Yi-Ching |
author_facet | Shih, Yu-Tzu Chen, Ing-Jun Wu, Yang-Chang Lo, Yi-Ching |
author_sort | Shih, Yu-Tzu |
collection | PubMed |
description | San-Huang-Xie-Xin-Tang (SHXT), composed of Coptidis rhizoma, Scutellariae radix and Rhei rhizoma, is a traditional Chinese herbal medicine used to treat gastritis, gastric bleeding and peptic ulcers. This study investigated the neuroprotective effects of SHXT on microglia-mediated neurotoxicity using co-cultured lipopolysaccharide (LPS)-activated microglia-like BV-2 cells with neuroblastoma SH-SY5Y cells. Effects of SHXT on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity were also examined in SH-SY5Y cells. Results indicated SHXT inhibited LPS-induced inflammation of BV-2 cells by downregulation of iNOS, NO, COX-2, PGE(2), gp91(phox), iROS, TNF-α, IL-1β, inhibition of IκBα degradation and upregulation of HO-1. In addition, SHXT increased cell viability and down regulated nNOS, COX-2 and gp91(phox) of SH-SY5Y cells co-cultured with LPS activated BV-2 cells. SHXT treatment increased cell viability and mitochondria membrane potential (MMP), decreased expression of nNOS, COX-2, gp91(phox) and iROS, and inhibited IκBα degradation in 6-OHDA-treated SH-SY5Y cells. SHXT also attenuated LPS activated BV-2 cells- and 6-OHDA-induced cell death in differentiated SH-SY5Y cells with db-cAMP. Furthermore, SHXT-inhibited nuclear translocation of p65 subunit of NF-κB in LPS treated BV-2 cells and 6-OHDA treated SH-SY5Y cells. In conclusion, SHXT showed protection from activated microglia- and 6-OHDA-induced neurotoxicity by attenuating inflammation and oxidative stress. |
format | Online Article Text |
id | pubmed-3135633 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-31356332011-07-22 San-Huang-Xie-Xin-Tang Protects against Activated Microglia- and 6-OHDA-Induced Toxicity in Neuronal SH-SY5Y Cells Shih, Yu-Tzu Chen, Ing-Jun Wu, Yang-Chang Lo, Yi-Ching Evid Based Complement Alternat Med Original Article San-Huang-Xie-Xin-Tang (SHXT), composed of Coptidis rhizoma, Scutellariae radix and Rhei rhizoma, is a traditional Chinese herbal medicine used to treat gastritis, gastric bleeding and peptic ulcers. This study investigated the neuroprotective effects of SHXT on microglia-mediated neurotoxicity using co-cultured lipopolysaccharide (LPS)-activated microglia-like BV-2 cells with neuroblastoma SH-SY5Y cells. Effects of SHXT on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity were also examined in SH-SY5Y cells. Results indicated SHXT inhibited LPS-induced inflammation of BV-2 cells by downregulation of iNOS, NO, COX-2, PGE(2), gp91(phox), iROS, TNF-α, IL-1β, inhibition of IκBα degradation and upregulation of HO-1. In addition, SHXT increased cell viability and down regulated nNOS, COX-2 and gp91(phox) of SH-SY5Y cells co-cultured with LPS activated BV-2 cells. SHXT treatment increased cell viability and mitochondria membrane potential (MMP), decreased expression of nNOS, COX-2, gp91(phox) and iROS, and inhibited IκBα degradation in 6-OHDA-treated SH-SY5Y cells. SHXT also attenuated LPS activated BV-2 cells- and 6-OHDA-induced cell death in differentiated SH-SY5Y cells with db-cAMP. Furthermore, SHXT-inhibited nuclear translocation of p65 subunit of NF-κB in LPS treated BV-2 cells and 6-OHDA treated SH-SY5Y cells. In conclusion, SHXT showed protection from activated microglia- and 6-OHDA-induced neurotoxicity by attenuating inflammation and oxidative stress. Hindawi Publishing Corporation 2011 2011-01-04 /pmc/articles/PMC3135633/ /pubmed/19339484 http://dx.doi.org/10.1093/ecam/nep025 Text en Copyright © 2011 Yu-Tzu Shih et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Shih, Yu-Tzu Chen, Ing-Jun Wu, Yang-Chang Lo, Yi-Ching San-Huang-Xie-Xin-Tang Protects against Activated Microglia- and 6-OHDA-Induced Toxicity in Neuronal SH-SY5Y Cells |
title | San-Huang-Xie-Xin-Tang Protects against Activated Microglia- and 6-OHDA-Induced Toxicity in Neuronal SH-SY5Y Cells |
title_full | San-Huang-Xie-Xin-Tang Protects against Activated Microglia- and 6-OHDA-Induced Toxicity in Neuronal SH-SY5Y Cells |
title_fullStr | San-Huang-Xie-Xin-Tang Protects against Activated Microglia- and 6-OHDA-Induced Toxicity in Neuronal SH-SY5Y Cells |
title_full_unstemmed | San-Huang-Xie-Xin-Tang Protects against Activated Microglia- and 6-OHDA-Induced Toxicity in Neuronal SH-SY5Y Cells |
title_short | San-Huang-Xie-Xin-Tang Protects against Activated Microglia- and 6-OHDA-Induced Toxicity in Neuronal SH-SY5Y Cells |
title_sort | san-huang-xie-xin-tang protects against activated microglia- and 6-ohda-induced toxicity in neuronal sh-sy5y cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135633/ https://www.ncbi.nlm.nih.gov/pubmed/19339484 http://dx.doi.org/10.1093/ecam/nep025 |
work_keys_str_mv | AT shihyutzu sanhuangxiexintangprotectsagainstactivatedmicrogliaand6ohdainducedtoxicityinneuronalshsy5ycells AT cheningjun sanhuangxiexintangprotectsagainstactivatedmicrogliaand6ohdainducedtoxicityinneuronalshsy5ycells AT wuyangchang sanhuangxiexintangprotectsagainstactivatedmicrogliaand6ohdainducedtoxicityinneuronalshsy5ycells AT loyiching sanhuangxiexintangprotectsagainstactivatedmicrogliaand6ohdainducedtoxicityinneuronalshsy5ycells |