Cargando…
Odontogenic Differentiation of Human Dental Pulp Stem Cells Stimulated by the Calcium Phosphate Porous Granules
Effects of three-dimensional (3D) calcium phosphate (CaP) porous granules on the growth and odontogenic differentiation of human dental pulp stem cells (hDPSCs) were examined for dental tissue engineering. hDPSCs isolated from adult human dental pulps were cultured for 3-4 passages, and populated on...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE-Hindawi Access to Research
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136101/ https://www.ncbi.nlm.nih.gov/pubmed/21772958 http://dx.doi.org/10.4061/2011/812547 |
_version_ | 1782208170880401408 |
---|---|
author | Nam, Sunyoung Won, Jong-Eun Kim, Cheol-Hwan Kim, Hae-Won |
author_facet | Nam, Sunyoung Won, Jong-Eun Kim, Cheol-Hwan Kim, Hae-Won |
author_sort | Nam, Sunyoung |
collection | PubMed |
description | Effects of three-dimensional (3D) calcium phosphate (CaP) porous granules on the growth and odontogenic differentiation of human dental pulp stem cells (hDPSCs) were examined for dental tissue engineering. hDPSCs isolated from adult human dental pulps were cultured for 3-4 passages, and populated on porous granules. Cell growth on the culture dish showed an ongoing increase for up to 21 days, whereas the growth on the 3D granules decreased after 14 days. This reduction in proliferative potential on the 3D granules was more conspicuous under the osteogenic medium conditions, indicating that the 3D granules may induce the odontogenic differentiation of hDPSCs. Differentiation behavior on the 3D granules was confirmed by the increased alkaline phosphatase activity, up-regulation of odontoblast-specific genes, including dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) by quantitative polymerase chain reaction, and greater level of dentin sialoprotein synthesis by western blot. Moreover, the cellular mineralization, as assessed by Alizarin red S and calcium quantification, was significantly higher in the 3D CaP granules than in the culture dish. Taken all, the 3D CaP porous granules should be useful for dental tissue engineering in combination with hDPSCs by providing favorable 3D substrate conditions for cell growth and odontogenic development. |
format | Online Article Text |
id | pubmed-3136101 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | SAGE-Hindawi Access to Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-31361012011-07-19 Odontogenic Differentiation of Human Dental Pulp Stem Cells Stimulated by the Calcium Phosphate Porous Granules Nam, Sunyoung Won, Jong-Eun Kim, Cheol-Hwan Kim, Hae-Won J Tissue Eng Research Article Effects of three-dimensional (3D) calcium phosphate (CaP) porous granules on the growth and odontogenic differentiation of human dental pulp stem cells (hDPSCs) were examined for dental tissue engineering. hDPSCs isolated from adult human dental pulps were cultured for 3-4 passages, and populated on porous granules. Cell growth on the culture dish showed an ongoing increase for up to 21 days, whereas the growth on the 3D granules decreased after 14 days. This reduction in proliferative potential on the 3D granules was more conspicuous under the osteogenic medium conditions, indicating that the 3D granules may induce the odontogenic differentiation of hDPSCs. Differentiation behavior on the 3D granules was confirmed by the increased alkaline phosphatase activity, up-regulation of odontoblast-specific genes, including dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) by quantitative polymerase chain reaction, and greater level of dentin sialoprotein synthesis by western blot. Moreover, the cellular mineralization, as assessed by Alizarin red S and calcium quantification, was significantly higher in the 3D CaP granules than in the culture dish. Taken all, the 3D CaP porous granules should be useful for dental tissue engineering in combination with hDPSCs by providing favorable 3D substrate conditions for cell growth and odontogenic development. SAGE-Hindawi Access to Research 2011-03-31 /pmc/articles/PMC3136101/ /pubmed/21772958 http://dx.doi.org/10.4061/2011/812547 Text en Copyright © 2011 Sunyoung Nam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Nam, Sunyoung Won, Jong-Eun Kim, Cheol-Hwan Kim, Hae-Won Odontogenic Differentiation of Human Dental Pulp Stem Cells Stimulated by the Calcium Phosphate Porous Granules |
title | Odontogenic Differentiation of Human Dental Pulp Stem Cells Stimulated by the Calcium Phosphate Porous Granules |
title_full | Odontogenic Differentiation of Human Dental Pulp Stem Cells Stimulated by the Calcium Phosphate Porous Granules |
title_fullStr | Odontogenic Differentiation of Human Dental Pulp Stem Cells Stimulated by the Calcium Phosphate Porous Granules |
title_full_unstemmed | Odontogenic Differentiation of Human Dental Pulp Stem Cells Stimulated by the Calcium Phosphate Porous Granules |
title_short | Odontogenic Differentiation of Human Dental Pulp Stem Cells Stimulated by the Calcium Phosphate Porous Granules |
title_sort | odontogenic differentiation of human dental pulp stem cells stimulated by the calcium phosphate porous granules |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136101/ https://www.ncbi.nlm.nih.gov/pubmed/21772958 http://dx.doi.org/10.4061/2011/812547 |
work_keys_str_mv | AT namsunyoung odontogenicdifferentiationofhumandentalpulpstemcellsstimulatedbythecalciumphosphateporousgranules AT wonjongeun odontogenicdifferentiationofhumandentalpulpstemcellsstimulatedbythecalciumphosphateporousgranules AT kimcheolhwan odontogenicdifferentiationofhumandentalpulpstemcellsstimulatedbythecalciumphosphateporousgranules AT kimhaewon odontogenicdifferentiationofhumandentalpulpstemcellsstimulatedbythecalciumphosphateporousgranules |