Cargando…
Molecular Mechanisms of Cigarette Smoke-Induced Proliferation of Lung Cells and Prevention by Vitamin C
Lung cancer is the leading cause of cancer dearth. Cigarette smoking is the strongest risk factor for developing lung cancer, which is conceivably initiated by proliferation. Here, we show that low concentration of aqueous extract of cigarette smoke (AECS) causes excessive proliferation of human lun...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136156/ https://www.ncbi.nlm.nih.gov/pubmed/21772844 http://dx.doi.org/10.1155/2011/561862 |
_version_ | 1782208179116965888 |
---|---|
author | Dey, Neekkan Chattopadhyay, Dhruba J. Chatterjee, Indu B. |
author_facet | Dey, Neekkan Chattopadhyay, Dhruba J. Chatterjee, Indu B. |
author_sort | Dey, Neekkan |
collection | PubMed |
description | Lung cancer is the leading cause of cancer dearth. Cigarette smoking is the strongest risk factor for developing lung cancer, which is conceivably initiated by proliferation. Here, we show that low concentration of aqueous extract of cigarette smoke (AECS) causes excessive proliferation of human lung epithelial cells (A549) without any apoptotic cell death. The causative factor responsible for AECS-induced proliferation has been identified as p-benzoquinone (p-BQ). Coimmunoprecipitation and immunoblot experiments indicate that p-BQ binds with epidermal growth factor receptor (EGFR). However, in contrast to EGF, it causes aberrant phosphorylation of EGFR that lacks c-Cbl-mediated ubiquitination and degradation resulting in persistent activation of EGFR. This is followed by activation of Hras + Kras and the downstream survival and proliferative signaling molecules Akt and ERK1/2, as well as the nuclear transcription factors c-Myc and c-Fos. Vitamin C and/or antibody to p-BQ prevents AECS/p-BQ-induced proliferation of lung cells apparently by inactivating p-BQ and thereby preventing activation of EGFR and the downstream signaling molecules. The results suggest that vitamin C and/or antibody to p-BQ may provide a novel intervention for preventing initiation of lung cancer in smokers. |
format | Online Article Text |
id | pubmed-3136156 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-31361562011-07-19 Molecular Mechanisms of Cigarette Smoke-Induced Proliferation of Lung Cells and Prevention by Vitamin C Dey, Neekkan Chattopadhyay, Dhruba J. Chatterjee, Indu B. J Oncol Research Article Lung cancer is the leading cause of cancer dearth. Cigarette smoking is the strongest risk factor for developing lung cancer, which is conceivably initiated by proliferation. Here, we show that low concentration of aqueous extract of cigarette smoke (AECS) causes excessive proliferation of human lung epithelial cells (A549) without any apoptotic cell death. The causative factor responsible for AECS-induced proliferation has been identified as p-benzoquinone (p-BQ). Coimmunoprecipitation and immunoblot experiments indicate that p-BQ binds with epidermal growth factor receptor (EGFR). However, in contrast to EGF, it causes aberrant phosphorylation of EGFR that lacks c-Cbl-mediated ubiquitination and degradation resulting in persistent activation of EGFR. This is followed by activation of Hras + Kras and the downstream survival and proliferative signaling molecules Akt and ERK1/2, as well as the nuclear transcription factors c-Myc and c-Fos. Vitamin C and/or antibody to p-BQ prevents AECS/p-BQ-induced proliferation of lung cells apparently by inactivating p-BQ and thereby preventing activation of EGFR and the downstream signaling molecules. The results suggest that vitamin C and/or antibody to p-BQ may provide a novel intervention for preventing initiation of lung cancer in smokers. Hindawi Publishing Corporation 2011 2011-05-31 /pmc/articles/PMC3136156/ /pubmed/21772844 http://dx.doi.org/10.1155/2011/561862 Text en Copyright © 2011 Neekkan Dey et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Dey, Neekkan Chattopadhyay, Dhruba J. Chatterjee, Indu B. Molecular Mechanisms of Cigarette Smoke-Induced Proliferation of Lung Cells and Prevention by Vitamin C |
title | Molecular Mechanisms of Cigarette Smoke-Induced Proliferation of Lung Cells and Prevention by Vitamin C |
title_full | Molecular Mechanisms of Cigarette Smoke-Induced Proliferation of Lung Cells and Prevention by Vitamin C |
title_fullStr | Molecular Mechanisms of Cigarette Smoke-Induced Proliferation of Lung Cells and Prevention by Vitamin C |
title_full_unstemmed | Molecular Mechanisms of Cigarette Smoke-Induced Proliferation of Lung Cells and Prevention by Vitamin C |
title_short | Molecular Mechanisms of Cigarette Smoke-Induced Proliferation of Lung Cells and Prevention by Vitamin C |
title_sort | molecular mechanisms of cigarette smoke-induced proliferation of lung cells and prevention by vitamin c |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136156/ https://www.ncbi.nlm.nih.gov/pubmed/21772844 http://dx.doi.org/10.1155/2011/561862 |
work_keys_str_mv | AT deyneekkan molecularmechanismsofcigarettesmokeinducedproliferationoflungcellsandpreventionbyvitaminc AT chattopadhyaydhrubaj molecularmechanismsofcigarettesmokeinducedproliferationoflungcellsandpreventionbyvitaminc AT chatterjeeindub molecularmechanismsofcigarettesmokeinducedproliferationoflungcellsandpreventionbyvitaminc |