Cargando…
Stabilization of a G-Quadruplex from Unfolding by Replication Protein A Using Potassium and the Porphyrin TMPyP4
Replication protein A (RPA) plays an essential role in DNA replication by binding and unfolding non-canonical single-stranded DNA (ssDNA) structures. Of the six RPA ssDNA binding domains (labeled A-F), RPA-CDE selectively binds a G-quadruplex forming sequence (5′-TAGGGGAAGGGTTGGAGTGGGTT-3′ called Gq...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE-Hindawi Access to Research
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136172/ https://www.ncbi.nlm.nih.gov/pubmed/21772995 http://dx.doi.org/10.4061/2011/529828 |
Sumario: | Replication protein A (RPA) plays an essential role in DNA replication by binding and unfolding non-canonical single-stranded DNA (ssDNA) structures. Of the six RPA ssDNA binding domains (labeled A-F), RPA-CDE selectively binds a G-quadruplex forming sequence (5′-TAGGGGAAGGGTTGGAGTGGGTT-3′ called Gq23). In K(+), Gq23 forms a mixed parallel/antiparallel conformation, and in Na(+) Gq23 has a less stable (T (M) lowered by ∼20°C), antiparallel conformation. Gq23 is intramolecular and 1D NMR confirms a stable G-quadruplex structure in K(+). Full-length RPA and RPA-CDE-core can bind and unfold the Na(+) form of Gq23 very efficiently, but complete unfolding is not observed with the K(+) form. Studies with G-quadruplex ligands, indicate that TMPyP4 has a thermal stabilization effect on Gq23 in K(+), and inhibits complete unfolding by RPA and RPA-CDE-core. Overall these data indicate that G-quadruplexes present a unique problem for RPA to unfold and ligands, such as TMPyP4, could possibly hinder DNA replication by blocking unfolding by RPA. |
---|