Cargando…
Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFβ signaling
Mice with thyroid-specific expression of oncogenic BRAF (Tg-Braf) develop papillary thyroid cancers (PTC) that are locally invasive and have well-defined foci of poorly differentiated carcinoma (PDTC). To investigate the PTC-PDTC progression, we performed a microarray analysis using RNA from paired...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136543/ https://www.ncbi.nlm.nih.gov/pubmed/21383698 http://dx.doi.org/10.1038/onc.2011.44 |
Sumario: | Mice with thyroid-specific expression of oncogenic BRAF (Tg-Braf) develop papillary thyroid cancers (PTC) that are locally invasive and have well-defined foci of poorly differentiated carcinoma (PDTC). To investigate the PTC-PDTC progression, we performed a microarray analysis using RNA from paired samples of PDTC and PTC collected from the same animals by laser capture microdissection. Analysis of 8 paired samples revealed a profound deregulation of genes involved in cell adhesion and intracellular junctions, with changes consistent with an epithelial-mesenchymal transition (EMT). This was confirmed by IHC, as vimentin expression was increased and E-cadherin lost in PDTC compared to adjacent PTC. Moreover, PDTC stained positively for phospho-Smad2, suggesting a role for TGFβ in mediating this process. Accordingly, TGFβ induced EMT in primary cultures of thyroid cells from Tg-Braf mice, whereas wild-type thyroid cells retained their epithelial features. TGFβ-induced Smad2 phosphorylation, transcriptional activity and induction of EMT required MAPK pathway activation in Tg-Braf thyrocytes. Hence, tumor initiation by oncogenic BRAF renders thyroid cells susceptible to TGFβ-induced EMT, through a MAPK-dependent process. |
---|