Cargando…
Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification
This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful b...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Open
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137158/ https://www.ncbi.nlm.nih.gov/pubmed/21769301 http://dx.doi.org/10.2174/1874120701105010047 |
_version_ | 1782208262763970560 |
---|---|
author | He, Xiaoming |
author_facet | He, Xiaoming |
author_sort | He, Xiaoming |
collection | PubMed |
description | This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems. |
format | Online Article Text |
id | pubmed-3137158 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Bentham Open |
record_format | MEDLINE/PubMed |
spelling | pubmed-31371582011-07-18 Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification He, Xiaoming Open Biomed Eng J Article This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems. Bentham Open 2011-04-12 /pmc/articles/PMC3137158/ /pubmed/21769301 http://dx.doi.org/10.2174/1874120701105010047 Text en © Xiaoming He; Licensee Bentham Open. http://creativecommons.org/licenses/by-nc/3.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. |
spellingShingle | Article He, Xiaoming Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification |
title | Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification |
title_full | Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification |
title_fullStr | Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification |
title_full_unstemmed | Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification |
title_short | Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification |
title_sort | thermostability of biological systems: fundamentals, challenges, and quantification |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137158/ https://www.ncbi.nlm.nih.gov/pubmed/21769301 http://dx.doi.org/10.2174/1874120701105010047 |
work_keys_str_mv | AT hexiaoming thermostabilityofbiologicalsystemsfundamentalschallengesandquantification |