Cargando…
Prediction of Drought-Resistant Genes in Arabidopsis thaliana Using SVM-RFE
BACKGROUND: Identifying genes with essential roles in resisting environmental stress rates high in agronomic importance. Although massive DNA microarray gene expression data have been generated for plants, current computational approaches underutilize these data for studying genotype-trait relations...
Autores principales: | Liang, Yanchun, Zhang, Fan, Wang, Juexin, Joshi, Trupti, Wang, Yan, Xu, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137602/ https://www.ncbi.nlm.nih.gov/pubmed/21789178 http://dx.doi.org/10.1371/journal.pone.0021750 |
Ejemplares similares
-
Improving the Performance of SVM-RFE to Select Genes in Microarray Data
por: Ding, Yuanyuan, et al.
Publicado: (2006) -
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
por: Huang, Mei-Ling, et al.
Publicado: (2014) -
Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics
por: Lin, Xiaohui, et al.
Publicado: (2017) -
AdaBoost-based multiple SVM-RFE for classification of mammograms in DDSM
por: Yoon, Sejong, et al.
Publicado: (2009) -
Determination of individual factors associated with hallux valgus using SVM-RFE
por: Nakao, Hidetoshi, et al.
Publicado: (2023)