Cargando…
Interpol: An R package for preprocessing of protein sequences
BACKGROUND: Most machine learning techniques currently applied in the literature need a fixed dimensionality of input data. However, this requirement is frequently violated by real input data, such as DNA and protein sequences, that often differ in length due to insertions and deletions. It is also...
Autores principales: | Heider, Dominik, Hoffmann, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138420/ https://www.ncbi.nlm.nih.gov/pubmed/21682849 http://dx.doi.org/10.1186/1756-0381-4-16 |
Ejemplares similares
-
Machine learning on normalized protein sequences
por: Heider, Dominik, et al.
Publicado: (2011) -
affyPara—a Bioconductor Package for Parallelized Preprocessing Algorithms of Affymetrix Microarray Data
por: Schmidberger, Markus, et al.
Publicado: (2009) -
scruff: an R/Bioconductor package for preprocessing single-cell RNA-sequencing data
por: Wang, Zhe, et al.
Publicado: (2019) -
Interpolation-Based Semantic Gate Extraction and Its Applications to QBF Preprocessing
por: Slivovsky, Friedrich
Publicado: (2020) -
Fingerprinting-Based Indoor Localization Using Interpolated Preprocessed CSI Phases and Bayesian Tracking
por: Wang, Wenxu, et al.
Publicado: (2020)