Cargando…
Expression of Multiple Artificial MicroRNAs from a Chicken miRNA126-Based Lentiviral Vector
BACKGROUND: The use of RNAi in both basic and translational research often requires expression of multiple siRNAs from the same vector. METHODS/PRINCIPAL FINDINGS: We have developed a novel chicken miR126-based artificial miRNA expression system that can express one, two or three miRNAs from a singl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138786/ https://www.ncbi.nlm.nih.gov/pubmed/21789258 http://dx.doi.org/10.1371/journal.pone.0022437 |
_version_ | 1782208407756865536 |
---|---|
author | Chen, Steve C.-Y. Stern, Patrick Guo, Zhuyan Chen, Jianzhu |
author_facet | Chen, Steve C.-Y. Stern, Patrick Guo, Zhuyan Chen, Jianzhu |
author_sort | Chen, Steve C.-Y. |
collection | PubMed |
description | BACKGROUND: The use of RNAi in both basic and translational research often requires expression of multiple siRNAs from the same vector. METHODS/PRINCIPAL FINDINGS: We have developed a novel chicken miR126-based artificial miRNA expression system that can express one, two or three miRNAs from a single cassette in a lentiviral vector. We show that each of the miRNAs expressed from the same lentiviral vector is capable of potent inhibition of reporter gene expression in transient transfection and stable integration assays in chicken fibroblast DF-1 cells. Transduction of Vero cells with lentivirus expressing two or three different anti-influenza miRNAs leads to inhibition of influenza virus production. In addition, the chicken miR126-based expression system effectively inhibits reporter gene expression in human, monkey, dog and mouse cells. These results demonstrate that the flanking regions of a single primary miRNA can support processing of three different stem-loops in a single vector. CONCLUSIONS/SIGNIFICANCE: This novel design expands the means to express multiple miRNAs from the same vector for potent and effective silencing of target genes and influenza virus. |
format | Online Article Text |
id | pubmed-3138786 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31387862011-07-25 Expression of Multiple Artificial MicroRNAs from a Chicken miRNA126-Based Lentiviral Vector Chen, Steve C.-Y. Stern, Patrick Guo, Zhuyan Chen, Jianzhu PLoS One Research Article BACKGROUND: The use of RNAi in both basic and translational research often requires expression of multiple siRNAs from the same vector. METHODS/PRINCIPAL FINDINGS: We have developed a novel chicken miR126-based artificial miRNA expression system that can express one, two or three miRNAs from a single cassette in a lentiviral vector. We show that each of the miRNAs expressed from the same lentiviral vector is capable of potent inhibition of reporter gene expression in transient transfection and stable integration assays in chicken fibroblast DF-1 cells. Transduction of Vero cells with lentivirus expressing two or three different anti-influenza miRNAs leads to inhibition of influenza virus production. In addition, the chicken miR126-based expression system effectively inhibits reporter gene expression in human, monkey, dog and mouse cells. These results demonstrate that the flanking regions of a single primary miRNA can support processing of three different stem-loops in a single vector. CONCLUSIONS/SIGNIFICANCE: This novel design expands the means to express multiple miRNAs from the same vector for potent and effective silencing of target genes and influenza virus. Public Library of Science 2011-07-18 /pmc/articles/PMC3138786/ /pubmed/21789258 http://dx.doi.org/10.1371/journal.pone.0022437 Text en Chen et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Chen, Steve C.-Y. Stern, Patrick Guo, Zhuyan Chen, Jianzhu Expression of Multiple Artificial MicroRNAs from a Chicken miRNA126-Based Lentiviral Vector |
title | Expression of Multiple Artificial MicroRNAs from a Chicken miRNA126-Based Lentiviral Vector |
title_full | Expression of Multiple Artificial MicroRNAs from a Chicken miRNA126-Based Lentiviral Vector |
title_fullStr | Expression of Multiple Artificial MicroRNAs from a Chicken miRNA126-Based Lentiviral Vector |
title_full_unstemmed | Expression of Multiple Artificial MicroRNAs from a Chicken miRNA126-Based Lentiviral Vector |
title_short | Expression of Multiple Artificial MicroRNAs from a Chicken miRNA126-Based Lentiviral Vector |
title_sort | expression of multiple artificial micrornas from a chicken mirna126-based lentiviral vector |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138786/ https://www.ncbi.nlm.nih.gov/pubmed/21789258 http://dx.doi.org/10.1371/journal.pone.0022437 |
work_keys_str_mv | AT chenstevecy expressionofmultipleartificialmicrornasfromachickenmirna126basedlentiviralvector AT sternpatrick expressionofmultipleartificialmicrornasfromachickenmirna126basedlentiviralvector AT guozhuyan expressionofmultipleartificialmicrornasfromachickenmirna126basedlentiviralvector AT chenjianzhu expressionofmultipleartificialmicrornasfromachickenmirna126basedlentiviralvector |