Cargando…
Oxidative Toxicity in Neurodegenerative Diseases: Role of Mitochondrial Dysfunction and Therapeutic Strategies
Besides fluorine, oxygen is the most electronegative element with the highest reduction potential in biological systems. Metabolic pathways in mammalian cells utilize oxygen as the ultimate oxidizing agent to harvest free energy. They are very efficient, but not without risk of generating various ox...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139184/ https://www.ncbi.nlm.nih.gov/pubmed/21785590 http://dx.doi.org/10.1155/2011/683728 |
_version_ | 1782208432170860544 |
---|---|
author | Facecchia, Katie Fochesato, Lee-Anne Ray, Sidhartha D. Stohs, Sidney J. Pandey, Siyaram |
author_facet | Facecchia, Katie Fochesato, Lee-Anne Ray, Sidhartha D. Stohs, Sidney J. Pandey, Siyaram |
author_sort | Facecchia, Katie |
collection | PubMed |
description | Besides fluorine, oxygen is the most electronegative element with the highest reduction potential in biological systems. Metabolic pathways in mammalian cells utilize oxygen as the ultimate oxidizing agent to harvest free energy. They are very efficient, but not without risk of generating various oxygen radicals. These cells have good antioxidative defense mechanisms to neutralize these radicals and prevent oxidative stress. However, increased oxidative stress results in oxidative modifications in lipid, protein, and nucleic acids, leading to mitochondrial dysfunction and cell death. Oxidative stress and mitochondrial dysfunction have been implicated in many neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and stroke-related brain damage. Research has indicated mitochondria play a central role in cell suicide. An increase in oxidative stress causes mitochondrial dysfunction, leading to more production of reactive oxygen species and eventually mitochondrial membrane permeabilization. Once the mitochondria are destabilized, cells are destined to commit suicide. Therefore, antioxidative agents alone are not sufficient to protect neuronal loss in many neurodegenerative diseases. Combinatorial treatment with antioxidative agents could stabilize mitochondria and may be the most suitable strategy to prevent neuronal loss. This review discusses recent work related to oxidative toxicity in the central nervous system and strategies to treat neurodegenerative diseases. |
format | Online Article Text |
id | pubmed-3139184 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-31391842011-07-22 Oxidative Toxicity in Neurodegenerative Diseases: Role of Mitochondrial Dysfunction and Therapeutic Strategies Facecchia, Katie Fochesato, Lee-Anne Ray, Sidhartha D. Stohs, Sidney J. Pandey, Siyaram J Toxicol Review Article Besides fluorine, oxygen is the most electronegative element with the highest reduction potential in biological systems. Metabolic pathways in mammalian cells utilize oxygen as the ultimate oxidizing agent to harvest free energy. They are very efficient, but not without risk of generating various oxygen radicals. These cells have good antioxidative defense mechanisms to neutralize these radicals and prevent oxidative stress. However, increased oxidative stress results in oxidative modifications in lipid, protein, and nucleic acids, leading to mitochondrial dysfunction and cell death. Oxidative stress and mitochondrial dysfunction have been implicated in many neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and stroke-related brain damage. Research has indicated mitochondria play a central role in cell suicide. An increase in oxidative stress causes mitochondrial dysfunction, leading to more production of reactive oxygen species and eventually mitochondrial membrane permeabilization. Once the mitochondria are destabilized, cells are destined to commit suicide. Therefore, antioxidative agents alone are not sufficient to protect neuronal loss in many neurodegenerative diseases. Combinatorial treatment with antioxidative agents could stabilize mitochondria and may be the most suitable strategy to prevent neuronal loss. This review discusses recent work related to oxidative toxicity in the central nervous system and strategies to treat neurodegenerative diseases. Hindawi Publishing Corporation 2011 2011-07-14 /pmc/articles/PMC3139184/ /pubmed/21785590 http://dx.doi.org/10.1155/2011/683728 Text en Copyright © 2011 Katie Facecchia et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Facecchia, Katie Fochesato, Lee-Anne Ray, Sidhartha D. Stohs, Sidney J. Pandey, Siyaram Oxidative Toxicity in Neurodegenerative Diseases: Role of Mitochondrial Dysfunction and Therapeutic Strategies |
title | Oxidative Toxicity in Neurodegenerative Diseases: Role of Mitochondrial Dysfunction and Therapeutic Strategies |
title_full | Oxidative Toxicity in Neurodegenerative Diseases: Role of Mitochondrial Dysfunction and Therapeutic Strategies |
title_fullStr | Oxidative Toxicity in Neurodegenerative Diseases: Role of Mitochondrial Dysfunction and Therapeutic Strategies |
title_full_unstemmed | Oxidative Toxicity in Neurodegenerative Diseases: Role of Mitochondrial Dysfunction and Therapeutic Strategies |
title_short | Oxidative Toxicity in Neurodegenerative Diseases: Role of Mitochondrial Dysfunction and Therapeutic Strategies |
title_sort | oxidative toxicity in neurodegenerative diseases: role of mitochondrial dysfunction and therapeutic strategies |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139184/ https://www.ncbi.nlm.nih.gov/pubmed/21785590 http://dx.doi.org/10.1155/2011/683728 |
work_keys_str_mv | AT facecchiakatie oxidativetoxicityinneurodegenerativediseasesroleofmitochondrialdysfunctionandtherapeuticstrategies AT fochesatoleeanne oxidativetoxicityinneurodegenerativediseasesroleofmitochondrialdysfunctionandtherapeuticstrategies AT raysidharthad oxidativetoxicityinneurodegenerativediseasesroleofmitochondrialdysfunctionandtherapeuticstrategies AT stohssidneyj oxidativetoxicityinneurodegenerativediseasesroleofmitochondrialdysfunctionandtherapeuticstrategies AT pandeysiyaram oxidativetoxicityinneurodegenerativediseasesroleofmitochondrialdysfunctionandtherapeuticstrategies |