Cargando…
Molecular Imaging and Pharmacokinetic Analysis of Carbon-11 Labeled Antisense Oligonucleotide LY2181308 in Cancer Patients
Antisense oligonucleotides (ASOs) have potential as anti-cancer agents by specifically modulating genes involved in tumorigenesis. However, little is known about ASO biodistribution and tissue pharmacokinetics (PKs) in humans, including whether sufficient delivery to target tumor tissue may be achie...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139194/ https://www.ncbi.nlm.nih.gov/pubmed/21772926 |
_version_ | 1782208434432638976 |
---|---|
author | Saleem, Azeem Matthews, Julian C. Ranson, Malcolm Callies, Sophie André, Valérie Lahn, Michael Dickinson, Claire Prenant, Christian Brown, Gavin McMahon, Adam Talbot, Denis C. Jones, Terry Price, Patricia M. |
author_facet | Saleem, Azeem Matthews, Julian C. Ranson, Malcolm Callies, Sophie André, Valérie Lahn, Michael Dickinson, Claire Prenant, Christian Brown, Gavin McMahon, Adam Talbot, Denis C. Jones, Terry Price, Patricia M. |
author_sort | Saleem, Azeem |
collection | PubMed |
description | Antisense oligonucleotides (ASOs) have potential as anti-cancer agents by specifically modulating genes involved in tumorigenesis. However, little is known about ASO biodistribution and tissue pharmacokinetics (PKs) in humans, including whether sufficient delivery to target tumor tissue may be achieved. In this preliminary study in human subjects, we used combined positron emission and computed tomography (PET-CT) imaging and subsequent modeling analysis of acquired dynamic data, to examine the in vivo biodistribution and PK properties of LY2181308 - a second generation ASO which targets the apoptosis inhibitor protein survivin. Following radiolabeling of LY2181308 with methylated carbon-11 ([(11)C]methylated-LY2181308), micro-doses (<1mg) were administered to three patients with solid tumors enrolled in a phase I trial. Moderate uptake of [(11)C]methylated-LY2181308 was observed in tumors (mean=32.5ng*h /mL, per mg administered intravenously). Highest uptake was seen in kidney and liver and lowest uptake was seen in lung and muscle. One patient underwent repeat analysis on day 15 of multiple dose therapy, during administration of LY2181308 (750mg), when altered tissue PKs and a favorable change in biodistribution was seen. [(11)C]methylated-LY2181308 exposure increased in tumor, lung and muscle, whereas renal and hepatic exposure decreased. This suggests that biological barriers to ASO tumor uptake seen at micro-doses were overcome by therapeutic dosing. In addition, (18)F-labeled fluorodeoxyglucose (FDG) scans carried out in the same patient before and after treatment showed up to 40% decreased tumor metabolism. For the development of anti-cancer ASOs, the results provide evidence of LY2181308 tumor tissue delivery and add valuable in vivo pharmacological information. For the development of novel therapeutic agents in general, the study exemplifies the merits of applying PET imaging methodology early in clinical investigations. |
format | Online Article Text |
id | pubmed-3139194 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-31391942011-07-19 Molecular Imaging and Pharmacokinetic Analysis of Carbon-11 Labeled Antisense Oligonucleotide LY2181308 in Cancer Patients Saleem, Azeem Matthews, Julian C. Ranson, Malcolm Callies, Sophie André, Valérie Lahn, Michael Dickinson, Claire Prenant, Christian Brown, Gavin McMahon, Adam Talbot, Denis C. Jones, Terry Price, Patricia M. Theranostics Research Paper Antisense oligonucleotides (ASOs) have potential as anti-cancer agents by specifically modulating genes involved in tumorigenesis. However, little is known about ASO biodistribution and tissue pharmacokinetics (PKs) in humans, including whether sufficient delivery to target tumor tissue may be achieved. In this preliminary study in human subjects, we used combined positron emission and computed tomography (PET-CT) imaging and subsequent modeling analysis of acquired dynamic data, to examine the in vivo biodistribution and PK properties of LY2181308 - a second generation ASO which targets the apoptosis inhibitor protein survivin. Following radiolabeling of LY2181308 with methylated carbon-11 ([(11)C]methylated-LY2181308), micro-doses (<1mg) were administered to three patients with solid tumors enrolled in a phase I trial. Moderate uptake of [(11)C]methylated-LY2181308 was observed in tumors (mean=32.5ng*h /mL, per mg administered intravenously). Highest uptake was seen in kidney and liver and lowest uptake was seen in lung and muscle. One patient underwent repeat analysis on day 15 of multiple dose therapy, during administration of LY2181308 (750mg), when altered tissue PKs and a favorable change in biodistribution was seen. [(11)C]methylated-LY2181308 exposure increased in tumor, lung and muscle, whereas renal and hepatic exposure decreased. This suggests that biological barriers to ASO tumor uptake seen at micro-doses were overcome by therapeutic dosing. In addition, (18)F-labeled fluorodeoxyglucose (FDG) scans carried out in the same patient before and after treatment showed up to 40% decreased tumor metabolism. For the development of anti-cancer ASOs, the results provide evidence of LY2181308 tumor tissue delivery and add valuable in vivo pharmacological information. For the development of novel therapeutic agents in general, the study exemplifies the merits of applying PET imaging methodology early in clinical investigations. Ivyspring International Publisher 2011-06-01 /pmc/articles/PMC3139194/ /pubmed/21772926 Text en © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. |
spellingShingle | Research Paper Saleem, Azeem Matthews, Julian C. Ranson, Malcolm Callies, Sophie André, Valérie Lahn, Michael Dickinson, Claire Prenant, Christian Brown, Gavin McMahon, Adam Talbot, Denis C. Jones, Terry Price, Patricia M. Molecular Imaging and Pharmacokinetic Analysis of Carbon-11 Labeled Antisense Oligonucleotide LY2181308 in Cancer Patients |
title | Molecular Imaging and Pharmacokinetic Analysis of Carbon-11 Labeled Antisense Oligonucleotide LY2181308 in Cancer Patients |
title_full | Molecular Imaging and Pharmacokinetic Analysis of Carbon-11 Labeled Antisense Oligonucleotide LY2181308 in Cancer Patients |
title_fullStr | Molecular Imaging and Pharmacokinetic Analysis of Carbon-11 Labeled Antisense Oligonucleotide LY2181308 in Cancer Patients |
title_full_unstemmed | Molecular Imaging and Pharmacokinetic Analysis of Carbon-11 Labeled Antisense Oligonucleotide LY2181308 in Cancer Patients |
title_short | Molecular Imaging and Pharmacokinetic Analysis of Carbon-11 Labeled Antisense Oligonucleotide LY2181308 in Cancer Patients |
title_sort | molecular imaging and pharmacokinetic analysis of carbon-11 labeled antisense oligonucleotide ly2181308 in cancer patients |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139194/ https://www.ncbi.nlm.nih.gov/pubmed/21772926 |
work_keys_str_mv | AT saleemazeem molecularimagingandpharmacokineticanalysisofcarbon11labeledantisenseoligonucleotidely2181308incancerpatients AT matthewsjulianc molecularimagingandpharmacokineticanalysisofcarbon11labeledantisenseoligonucleotidely2181308incancerpatients AT ransonmalcolm molecularimagingandpharmacokineticanalysisofcarbon11labeledantisenseoligonucleotidely2181308incancerpatients AT calliessophie molecularimagingandpharmacokineticanalysisofcarbon11labeledantisenseoligonucleotidely2181308incancerpatients AT andrevalerie molecularimagingandpharmacokineticanalysisofcarbon11labeledantisenseoligonucleotidely2181308incancerpatients AT lahnmichael molecularimagingandpharmacokineticanalysisofcarbon11labeledantisenseoligonucleotidely2181308incancerpatients AT dickinsonclaire molecularimagingandpharmacokineticanalysisofcarbon11labeledantisenseoligonucleotidely2181308incancerpatients AT prenantchristian molecularimagingandpharmacokineticanalysisofcarbon11labeledantisenseoligonucleotidely2181308incancerpatients AT browngavin molecularimagingandpharmacokineticanalysisofcarbon11labeledantisenseoligonucleotidely2181308incancerpatients AT mcmahonadam molecularimagingandpharmacokineticanalysisofcarbon11labeledantisenseoligonucleotidely2181308incancerpatients AT talbotdenisc molecularimagingandpharmacokineticanalysisofcarbon11labeledantisenseoligonucleotidely2181308incancerpatients AT jonesterry molecularimagingandpharmacokineticanalysisofcarbon11labeledantisenseoligonucleotidely2181308incancerpatients AT pricepatriciam molecularimagingandpharmacokineticanalysisofcarbon11labeledantisenseoligonucleotidely2181308incancerpatients |