Cargando…
The Role of Th17 in Neuroimmune Disorders: Target for CAM Therapy. Part I
CD4(+) effector cells, based on cytokine production, nuclear receptors and signaling pathways, have been categorized into four subsets. T-helper-1 cells produce IFN-γ, TNF-β, lymphotoxin and IL-10; T-helper-2 cells produce IL-4, IL-5, IL-10, IL-13, IL-21 and IL-31; T-helper-3, or regulatory T-cells,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139523/ https://www.ncbi.nlm.nih.gov/pubmed/19622600 http://dx.doi.org/10.1093/ecam/nep062 |
Sumario: | CD4(+) effector cells, based on cytokine production, nuclear receptors and signaling pathways, have been categorized into four subsets. T-helper-1 cells produce IFN-γ, TNF-β, lymphotoxin and IL-10; T-helper-2 cells produce IL-4, IL-5, IL-10, IL-13, IL-21 and IL-31; T-helper-3, or regulatory T-cells, produce IL-10, TGF-β and IL-35; and the recently discovered T-helper-17 cell produces IL-17, IL-17A, IL-17F, IL-21, IL-26 and CCL20. By producing IL-17 and other signaling molecules, Th17 contributes to the pathogenesis of multiple autoimmune diseases including allergic inflammation, rheumatoid arthritis, autoimmune gastritis, inflammatory bowel disease, psoriasis and multiple sclerosis. In this article, we review the differential regulation of inflammation in different tissues with a major emphasis on enhancement of neuroinflammation by local production of IL-17 in the brain. By understanding the role of pathogenic factors in the induction of autoimmune diseases by Th17 cells, CAM practitioners will be able to design CAM therapies targeting Th17 and associated cytokine activities and signaling pathways to repair the intestinal and blood-brain barriers for their patients with autoimmunities, in particular, those with neuroinflammation and neurodegeneration. |
---|